Matrix representation of filter banks corresponding to spline wavelets with shifted supports
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 156-168 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper presents a matrix representation of filter banks corresponding to spline wavelets with shifted supports. The matrix form of decomposition and reconstruction filters simplifies the writing of nonuniform nonstationary wavelet transforms built on nonuniform grids on a finite segment. Such a representation of filters is used, for example, in constructing error-correcting codes.
@article{ZNSL_2020_496_a11,
     author = {O. M. Kosogorov and A. A. Makarov and S. V. Makarova},
     title = {Matrix representation of filter banks corresponding to spline wavelets with shifted supports},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {156--168},
     year = {2020},
     volume = {496},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a11/}
}
TY  - JOUR
AU  - O. M. Kosogorov
AU  - A. A. Makarov
AU  - S. V. Makarova
TI  - Matrix representation of filter banks corresponding to spline wavelets with shifted supports
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 156
EP  - 168
VL  - 496
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a11/
LA  - ru
ID  - ZNSL_2020_496_a11
ER  - 
%0 Journal Article
%A O. M. Kosogorov
%A A. A. Makarov
%A S. V. Makarova
%T Matrix representation of filter banks corresponding to spline wavelets with shifted supports
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 156-168
%V 496
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a11/
%G ru
%F ZNSL_2020_496_a11
O. M. Kosogorov; A. A. Makarov; S. V. Makarova. Matrix representation of filter banks corresponding to spline wavelets with shifted supports. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 156-168. http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a11/

[1] A. A. Makarov, “O postroenii splainov maksimalnoi gladkosti”, Probl. matem. analiza, 60 (2011), 25–38 | Zbl

[2] Yu. K. Demyanovich, “Splain-veivlety pri odnokratnom lokalnom ukrupnenii setki”, Zap. nauchn. semin. POMI, 405, 2012, 97–118

[3] A. A. Makarov, “O dvukh algoritmakh veivlet-razlozheniya prostranstv lineinykh splainov”, Zap. nauchn. semin. POMI, 463, 2017, 277–293

[4] A. Makarov, S. Makarova, “On lazy Faber's type decomposition for linear splines”, AIP Conference Proceedings, 2164, 2019, 110006 | DOI

[5] S. Makarova, A. Makarov, “On linear spline wavelets with shifted supports”, Lect. Notes Comp. Sci., 11974, 2020, 430–437 | DOI | Zbl

[6] E. Stolnits, T. DeRouz, D. Salezin, Veivlety v kompyuternoi grafike, Per. s angl. NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2002

[7] S. Uelstid, Fraktaly i veivlety dlya szhatiya izobrazhenii v deistvii, Per. s angl., Triumf, M., 2003