@article{ZNSL_2020_496_a1,
author = {Y. L. Gurieva and V. P. Il'in},
title = {Conjugate direction methods for multiple solution of {SLAEs}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {26--42},
year = {2020},
volume = {496},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a1/}
}
Y. L. Gurieva; V. P. Il'in. Conjugate direction methods for multiple solution of SLAEs. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 26-42. http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a1/
[1] V. P. Ilin, Matematicheskoe modelirovanie, v. 1, Nepreryvnye i diskretnye modeli, Izd. SO RAN, Novosibirsk, 2017
[2] R. Nicolaides, “Deflation of conjugate gradients with applications to boundary value problems”, SIAM J. Numer. Annal., 24 (1987), 355–365 | DOI | MR | Zbl
[3] Z. Dostal, “Conjugate gradient method with preconditioning by projector”, Int. J. Computer Math., 23 (1988), 315–323 | DOI | Zbl
[4] L. Mansfield, “On the use of deflation to inprove the convergences of conjugate gradient iteration”, Communs. Appl. Numer. Math., 4 (1998), 151–156 | DOI
[5] L. Mansfield, “Damped Jacobi preconditioning and coarse grid deflation for conjugate gradient iIteration on parallel computers”, SIAM J. Sci. Stat. Comput., 12 (1991), 1314–1323 | DOI | MR | Zbl
[6] A. Gaul, M. H. Gutknecht, J. Liesen, R. Nabben, “A framework for deflated and augmented Krylov subspace methods”, SIAM J. Anal. Appl., 34 (2013), 495–518 | DOI | MR | Zbl
[7] M. H. Gutknecht, “Deflated and augmented Krylov subspace methods: A framework for the deflated BiCG and related solvers”, SIAM J. Matrix Appl., 35 (2014), 1444–1466 | DOI | MR | Zbl
[8] K. Ahuja, E. Sturler, L. Feng, “Recycling BiCG STAB with an application to parametric model order reduction”, SIAM J. Sci. Comput., 37 (2015), 429–446 | DOI | MR
[9] M. P. Neuenhofen, C. Greif, “MSTAB: Stabilized inducted dimension reduction for KRYLOV subspace recycling”, SIAM J. Sci. Comput., 40:2 (2018), 554–571 | DOI | MR
[10] R. Nabben, C. Vuik, “A comparison of deflation and coarse grid correction applied to porous media flow”, SIAM J. Numer. Anal., 42 (2004), 631–647 | DOI | MR
[11] J. M. Tang, R. Nabben, S. Vuik, U. A. Erlangga, “Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods”, J. Sci. Comput., 39 (2009), 340–370 | DOI | MR | Zbl
[12] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edn., SIAM, 2003 | MR | Zbl
[13] Y. Saad, M. Yeung, J. Erhel, F. Guyomarc'h, “A deflated version of conjugate gradient algorithm”, SIAM J. Sci. Comput., 24 (2000), 1909–1926 | DOI | MR
[14] V. Simoncini, D. B. Szyld, “Recent computational developments in Krylov subspace methods for linear systems”, Numer. Linear. Allegra Appl., 14 (2007), 1–39 | DOI | MR
[15] J. I. Aliaga, D. L. Boley, R. W Freund, V. Hernandez, “A Lanczos-type method for multiple starting vectors”, Math. Comp., 69 (2000), 1577–1601 | DOI | MR | Zbl
[16] J. Erhel, F. Guyomarc'h, “An augmented conjugate gradient method for solving consecutive symmetric positive definite linear systems”, SIAM J. Matrix Annal. Appl., 21 (2000), 1279–1299 | DOI | MR | Zbl
[17] L. Yu. Kolotilina, “Pereobuslavlivanie sistem lineinykh algebraicheskikh uravnenii s pomoschyu dvoinogo ischerpyvaniya. I. Teoriya”, Zap. nauchn. semin. POMI, 229, 1995, 95–152
[18] N. Venkovic, P. Mycek, L. Giraud, O. Le Maitre, Comparative study of harmonic and Rayleigh–Ritz procedures with applications for deflated conjugate gradients, Pressed Report Cerfacs, , 2020 hal-02434043
[19] V. P. Ilin, “O problemakh parallelnogo resheniya bolshikh SLAU”, Zap. nauchn. semin. POMI, 439, 2015, 112–127
[20] V. P. Ilin, Metody i tekhnologii konechnykh elementov, Izd. IVM i MG SO RAN, Novosibirsk, 2007
[21] M. A. Olshanskii, E. E. Tyrtyshnikov, Iterative Methods for Linear Systems. Theory and Applications, SIAM, Philadelphia, 2014 | MR | Zbl
[22] M. Arioli, “Generalized Golub–Kahan diagonalization and stopping criteria”, SIAM J. Matrix Anal. Appl., 34:2 (2013), 57–592 | DOI | MR
[23] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 2002 | MR | Zbl
[24] Yu. V. Vorobev, Metod momentov v prikladnoi matematike, Fizmatlit, M., 1958 | MR
[25] J. Liesen, Z. Strakos, Krylov Subspace Methods, Principles and Analysis, Oxford University Press, 2013 | MR | Zbl
[26] Ya. L. Gureva, V. P. Ilin, “O metodakh grubosetochnoi korrektsii v podprostranstvakh Krylova”, Zap. nauchn. semin. POMI, 463, 2017, 44–57
[27] V. P. Ilin, “Dvukhurovnevye metody naimenshikh kvadratov v podprostranstvakh Krylova”, Zap. nauchn. semin. POMI, 463, 2017, 224–239