Nonnegative chainable matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 5-25
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A description of nonnegative chainable matrices, based on fully indecomposable matrices, is given. The notion of the chainable rank of a nonnegative matrix is introduced and investigated. Properties of chainable matrices are used in studying stochastic Sarymsakov matrices.
@article{ZNSL_2020_496_a0,
     author = {Yu. A. Al'pin and I. V. Bashkin},
     title = {Nonnegative chainable matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--25},
     year = {2020},
     volume = {496},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a0/}
}
TY  - JOUR
AU  - Yu. A. Al'pin
AU  - I. V. Bashkin
TI  - Nonnegative chainable matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 5
EP  - 25
VL  - 496
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a0/
LA  - ru
ID  - ZNSL_2020_496_a0
ER  - 
%0 Journal Article
%A Yu. A. Al'pin
%A I. V. Bashkin
%T Nonnegative chainable matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 5-25
%V 496
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a0/
%G ru
%F ZNSL_2020_496_a0
Yu. A. Al'pin; I. V. Bashkin. Nonnegative chainable matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 5-25. http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a0/

[1] R. Sinkhorn, P. Knopp, “Problems involving diagonal products in nonnegative matrices”, Trans. Amer. Math. Soc., 136 (1969), 67–75 | DOI | MR | Zbl

[2] J. Hartfiel, J. Maxson, “The chainable matrix, a special combinatorial matrix”, Discrete Math., 12 (1975), 245–256 | DOI | MR | Zbl

[3] T. A. Sarymsakov, “O neodnorodnykh tsepyakh Markova”, Dokl. AN SSSR, 120 (1958), 465–467 | Zbl

[4] R. B. Bapat, T. E. S. Raghavan, Nonnegative Matrices and Applications, Cambridge University Press, 1997 | MR | Zbl

[5] V. N. Sachkov, V. E. Tarakanov, Kombinatorika neotritsatelnykh matrits, Izd-vo TVP, 2000 | MR

[6] P.-Y. Chevalier, V. V. Gusev, R. M. Jungers, J. M. Hendrickx, Sets of stochastic matrices with converging products: bounds and complexity, December 2017, arXiv: 1712.02614

[7] W. Xia, J. Liu, M. Cao, K. H. Johansson, T. Basar, “Generalized Sarymsakov matrices”, IEEE Trans. Autom. Control, 64:8 (2019), 3085–3100 | DOI | MR | Zbl

[8] J. Hartfiel, E. Seneta, “A note on semigroups of regular stochastic matrices”, Linear Algebra Appl., 141 (1990), 47–51 | DOI | MR | Zbl

[9] T. A. Sarymsakov, “Neodnorodnye tsepi Markova”, Teor. veroyatn. prim., 6 (1961), 194–201 | MR

[10] E. Seneta, Non-Negative Matrices and Markov Chains, Springer, 2006 | MR | Zbl

[11] R. A. Brualdi, B. Shader, “Strong Hall matrices”, SIAM J. Matrix Anal. Appl., 15 (1991), 359–365 | DOI | MR

[12] V. I. Romanovskii, Diskretnye tsepi Markova, Gostekhizdat, 1949 | MR

[13] A. E. Guterman, A. M. Maksaev, “Upper bounds on scrambling index for non-primitive digraphs”, Linear Multilinear Algebra, 2019 | DOI | MR