@article{ZNSL_2020_495_a8,
author = {M. S. Ermakov},
title = {On uniform consistency of nonparametric {tests.~II}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {147--176},
year = {2020},
volume = {495},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a8/}
}
M. S. Ermakov. On uniform consistency of nonparametric tests. II. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 147-176. http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a8/
[1] T. Anderson, “The integral of a symmetric unimodal function”, Proc.Amer.Math.Soc., 6:1 (1955), 170–176 | DOI | MR | Zbl
[2] J. Durbin, Distribution Theory for Tests Based on the Sample Distribution function, Regional Conference Series in Applied Mathematics, 9, SIAM, Philadelphia, 1973 | MR | Zbl
[3] A. Dvoretzky, J. Kiefer, J. Wolfowitz, “Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator”, Ann. Math. Statist., 27 (1956), 642–669 | DOI | MR | Zbl
[4] M. S. Ermakov, “Asimptoticheskaya minimaksnost kriteriev khi-kvadrat”, Teoriya veroyatn. i ee primen., 42:4 (1997), 668–695 | MR | Zbl
[5] M. S. Ermakov, “Ob asimptoticheski minimaksnom obnaruzhenii signala v gaussovskom belom shume”, Zap. nauchn. sem. POMI, 474, 2018, 124–138
[6] M. S. Ermakov, “O ravnomernoi sostoyatelnosti neparametricheskikh kriteriev”, Zap. nauchn. sem. POMI, 486, 2019, 98–147
[7] E. Gine, R. Nickl, Mathematical Foundation of Infinite–Dimensional Statistical Models, Cambridge University Press, Cambridge, 2015 | MR
[8] J. Hajek, Z. Sidak, P. K. Sen, Theory of Rank Tests, Academic Press, London, 1999 | MR | Zbl
[9] Yu. I. Ingster, “O sravnenii minimaksnykh svoistv testov Kolmogorova $\omega^2$ i $\chi^2$”, Teor. veroyatn. i ee primen., 32:2 (1987), 374–378 | MR | Zbl
[10] I. M. Johnstone, Gaussian estimation. Sequence and wavelet models, Book Draft, 2015 http://statweb.stanford.edu/ĩmj/
[11] A. Kolmogorov, “Sulla determinazione empirica di una legge di distribuzione”, G. Ist. Ital. Attuari., 4 (1933), 83–91 | Zbl
[12] M. Kendall, A. Styuart, Statisticheskie Vyvody i Svyazi, Nauka, M., 1973
[13] H. H. Kuo, Gaussian measures in Banach spaces, Springer, NY, 1975 | MR | Zbl
[14] E. L. Lehmann, J. P. Romano, Testing Statistical Hypothesis, Springer Verlag, NY, 2005 | MR
[15] O. V. Lepski, A. B. Tsybakov, “Asymptotically exact nonparametric hypothesistesting in sup-norm and at a fixed point”, Probab. Th. Rel.Fields, 117:1 (2000), 17–48 | DOI | MR | Zbl
[16] P. Massart, “The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality”, Ann. Probab., 18:3 (1990), 1269–1283 | DOI | MR | Zbl
[17] D. Mason, J. Schuenemeyer, “A Modified Kolmogorov-Smirnov Test Sensitive to Tail Alternatives”, Ann. Statist., 11:3 (1983), 933–946 | DOI | MR | Zbl
[18] F. J. Massey, “A note on the power of a non-parametric test”, Ann. Math. Statist., 21 (1950), 440–443 | DOI | MR | Zbl
[19] G. R. Shorack, J. A. Wellner, Empirical Processes with Application to Statistics, J. Wiley Sons, NY, 1986 | MR
[20] N. V. Smirnov, “Ob ukloneniyakh empiricheskoi krivoi raspredeleniya”, Matem. sb., 6:1 (1939), 3–26 | Zbl
[21] N. V. Smirnov, “Priblizhenie zakonov raspredeleniya sluchainykh velichin po empiricheskim dannym”, UMN, 10 (1944), 179–206 | Zbl
[22] N. Smirnov, “Table for estimating the goodness of fit of empirical distributions”, Ann. Math. Stat., 19:2 (1948), 279–281 | DOI | MR | Zbl
[23] V. Voinov, M. Nikulin, N. Balakrishnan, Chi-squared Goodness of Fit Test with Applications, Elswere Inc., Oxford, 2013
[24] A. Zygmund, Trigonometric series, Cambridge Univ. Press, London, 2002 | MR | Zbl
[25] D. M. Chibisov, “K issledovaniyu asimptoticheskoi moschnosti kriteriev soglasiya”, Teoriya veroyatn. i ee primen., 10:3 (1965), 460–478