On uniform consistency of nonparametric tests. II
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 147-176 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We provide necessary and sufficient conditions of uniform consistency of nonparametric sets of alternatives for Kolmogorov test. Nonparametric sets of alternatives can be defined both in terms of densities and distribution functions.
@article{ZNSL_2020_495_a8,
     author = {M. S. Ermakov},
     title = {On uniform consistency of nonparametric {tests.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {147--176},
     year = {2020},
     volume = {495},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a8/}
}
TY  - JOUR
AU  - M. S. Ermakov
TI  - On uniform consistency of nonparametric tests. II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 147
EP  - 176
VL  - 495
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a8/
LA  - ru
ID  - ZNSL_2020_495_a8
ER  - 
%0 Journal Article
%A M. S. Ermakov
%T On uniform consistency of nonparametric tests. II
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 147-176
%V 495
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a8/
%G ru
%F ZNSL_2020_495_a8
M. S. Ermakov. On uniform consistency of nonparametric tests. II. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 147-176. http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a8/

[1] T. Anderson, “The integral of a symmetric unimodal function”, Proc.Amer.Math.Soc., 6:1 (1955), 170–176 | DOI | MR | Zbl

[2] J. Durbin, Distribution Theory for Tests Based on the Sample Distribution function, Regional Conference Series in Applied Mathematics, 9, SIAM, Philadelphia, 1973 | MR | Zbl

[3] A. Dvoretzky, J. Kiefer, J. Wolfowitz, “Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator”, Ann. Math. Statist., 27 (1956), 642–669 | DOI | MR | Zbl

[4] M. S. Ermakov, “Asimptoticheskaya minimaksnost kriteriev khi-kvadrat”, Teoriya veroyatn. i ee primen., 42:4 (1997), 668–695 | MR | Zbl

[5] M. S. Ermakov, “Ob asimptoticheski minimaksnom obnaruzhenii signala v gaussovskom belom shume”, Zap. nauchn. sem. POMI, 474, 2018, 124–138

[6] M. S. Ermakov, “O ravnomernoi sostoyatelnosti neparametricheskikh kriteriev”, Zap. nauchn. sem. POMI, 486, 2019, 98–147

[7] E. Gine, R. Nickl, Mathematical Foundation of Infinite–Dimensional Statistical Models, Cambridge University Press, Cambridge, 2015 | MR

[8] J. Hajek, Z. Sidak, P. K. Sen, Theory of Rank Tests, Academic Press, London, 1999 | MR | Zbl

[9] Yu. I. Ingster, “O sravnenii minimaksnykh svoistv testov Kolmogorova $\omega^2$ i $\chi^2$”, Teor. veroyatn. i ee primen., 32:2 (1987), 374–378 | MR | Zbl

[10] I. M. Johnstone, Gaussian estimation. Sequence and wavelet models, Book Draft, 2015 http://statweb.stanford.edu/ĩmj/

[11] A. Kolmogorov, “Sulla determinazione empirica di una legge di distribuzione”, G. Ist. Ital. Attuari., 4 (1933), 83–91 | Zbl

[12] M. Kendall, A. Styuart, Statisticheskie Vyvody i Svyazi, Nauka, M., 1973

[13] H. H. Kuo, Gaussian measures in Banach spaces, Springer, NY, 1975 | MR | Zbl

[14] E. L. Lehmann, J. P. Romano, Testing Statistical Hypothesis, Springer Verlag, NY, 2005 | MR

[15] O. V. Lepski, A. B. Tsybakov, “Asymptotically exact nonparametric hypothesistesting in sup-norm and at a fixed point”, Probab. Th. Rel.Fields, 117:1 (2000), 17–48 | DOI | MR | Zbl

[16] P. Massart, “The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality”, Ann. Probab., 18:3 (1990), 1269–1283 | DOI | MR | Zbl

[17] D. Mason, J. Schuenemeyer, “A Modified Kolmogorov-Smirnov Test Sensitive to Tail Alternatives”, Ann. Statist., 11:3 (1983), 933–946 | DOI | MR | Zbl

[18] F. J. Massey, “A note on the power of a non-parametric test”, Ann. Math. Statist., 21 (1950), 440–443 | DOI | MR | Zbl

[19] G. R. Shorack, J. A. Wellner, Empirical Processes with Application to Statistics, J. Wiley Sons, NY, 1986 | MR

[20] N. V. Smirnov, “Ob ukloneniyakh empiricheskoi krivoi raspredeleniya”, Matem. sb., 6:1 (1939), 3–26 | Zbl

[21] N. V. Smirnov, “Priblizhenie zakonov raspredeleniya sluchainykh velichin po empiricheskim dannym”, UMN, 10 (1944), 179–206 | Zbl

[22] N. Smirnov, “Table for estimating the goodness of fit of empirical distributions”, Ann. Math. Stat., 19:2 (1948), 279–281 | DOI | MR | Zbl

[23] V. Voinov, M. Nikulin, N. Balakrishnan, Chi-squared Goodness of Fit Test with Applications, Elswere Inc., Oxford, 2013

[24] A. Zygmund, Trigonometric series, Cambridge Univ. Press, London, 2002 | MR | Zbl

[25] D. M. Chibisov, “K issledovaniyu asimptoticheskoi moschnosti kriteriev soglasiya”, Teoriya veroyatn. i ee primen., 10:3 (1965), 460–478