Calculation of constant values in lemma about functions $w(x)$ and $g(t)$ at method of smooth triangular functions
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 135-146
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we consider the method of smooth triangular functions. For one of the key lemmas of the method, all constants involved in the formulation are calculated.
@article{ZNSL_2020_495_a7,
author = {Ya. S. Golikova},
title = {Calculation of constant values in lemma about functions $w(x)$ and $g(t)$ at method of smooth triangular functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {135--146},
year = {2020},
volume = {495},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a7/}
}
TY - JOUR AU - Ya. S. Golikova TI - Calculation of constant values in lemma about functions $w(x)$ and $g(t)$ at method of smooth triangular functions JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 135 EP - 146 VL - 495 UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a7/ LA - ru ID - ZNSL_2020_495_a7 ER -
Ya. S. Golikova. Calculation of constant values in lemma about functions $w(x)$ and $g(t)$ at method of smooth triangular functions. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 135-146. http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a7/
[1] T. V. Arak, A. Yu. Zaitsev, “Ravnomernye predelnye teoremy dlya summ nezavisimykh sluchainykh velichin”, Tr. MIAN SSSR, 174, 1986, 3–214
[2] A. Yu. Zaitsev, “K mnogomernomu obobscheniyu metoda treugolnykh funktsii”, Zap. nauchn. semin. LOMI, 158, 1987, 81–104
[3] T. V. Arak, “O sblizhenii $n$-kratnykh svertok raspredelenii, imeyuschikh neotritsatelnuyu kharakteristicheskuyu funktsiyu, s soprovozhdayuschimi zakonami”, Teoriya veroyatn. i ee primen., 25:2 (1980), 225–246 | MR | Zbl
[4] Ya. S. Golikova, “O vychislenii konstant v neravenstvakh Araka dlya funktsii kontsentratsii veroyatnostnykh raspredelenii”, Zap. nauchn. semin. POMI, 475, 2019, 86–97 | MR