@article{ZNSL_2020_495_a6,
author = {E. S. Garai},
title = {On convergence of multidimensional workload with dominant service duration to a stable process},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {121--134},
year = {2020},
volume = {495},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a6/}
}
E. S. Garai. On convergence of multidimensional workload with dominant service duration to a stable process. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 121-134. http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a6/
[1] E. S. Garai, “O skhodimosti mnogomernoi nagruzki v sisteme obsluzhivaniya k ustoichivomu protsessu”, Zap. nauchn. semin. POMI, 466, 2017, 96–108
[2] I. Kaj, M. S. Taqqu, “Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach”, In and Out of Equilibtium, v. II, Progress in Probability, 60, Birkhäuser, Basel, 2008, 383–427 | MR | Zbl
[3] M. A. Lifshits, Sluchainye protsessy – ot teorii k praktike, Lan, S.-Peterburg, 2016
[4] A. N. Shiryaev, Veroyatnost, Nauka, M., 1980
[5] A. V. Skorokhod, Sluchainye protsessy s nezavisimymi prirascheniyami, Nauka, M., 1964
[6] A. V. Skorokhod, Issledovaniya po teorii sluchainykh protsessov, izd-vo KGU, Kiev, 1961
[7] B. V. Gnedenko, Kurs teorii veroyatnostei, URSS, M., 2004 | MR
[8] I. A. Ibragimov, Yu. V. Linnik, Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965