On convergence of multidimensional workload with dominant service duration to a stable process
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 121-134

Voir la notice de l'article provenant de la source Math-Net.Ru

A service system model introduced by I. Kai and M. S. Takku is considered. We prove a limit theorem on the convergence of finite-dimensional distributions of the total workload process with a multidimensional resource to the corresponding distributions of a multidimensional stable process. The situation is considered when the service durations prevails over the values of multidimensional resources.
@article{ZNSL_2020_495_a6,
     author = {E. S. Garai},
     title = {On convergence of multidimensional workload with dominant service duration to a stable process},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {121--134},
     publisher = {mathdoc},
     volume = {495},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a6/}
}
TY  - JOUR
AU  - E. S. Garai
TI  - On convergence of multidimensional workload with dominant service duration to a stable process
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 121
EP  - 134
VL  - 495
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a6/
LA  - ru
ID  - ZNSL_2020_495_a6
ER  - 
%0 Journal Article
%A E. S. Garai
%T On convergence of multidimensional workload with dominant service duration to a stable process
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 121-134
%V 495
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a6/
%G ru
%F ZNSL_2020_495_a6
E. S. Garai. On convergence of multidimensional workload with dominant service duration to a stable process. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 121-134. http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a6/