On convergence of multidimensional workload with dominant service duration to a stable process
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 121-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A service system model introduced by I. Kai and M. S. Takku is considered. We prove a limit theorem on the convergence of finite-dimensional distributions of the total workload process with a multidimensional resource to the corresponding distributions of a multidimensional stable process. The situation is considered when the service durations prevails over the values of multidimensional resources.
@article{ZNSL_2020_495_a6,
     author = {E. S. Garai},
     title = {On convergence of multidimensional workload with dominant service duration to a stable process},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {121--134},
     year = {2020},
     volume = {495},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a6/}
}
TY  - JOUR
AU  - E. S. Garai
TI  - On convergence of multidimensional workload with dominant service duration to a stable process
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 121
EP  - 134
VL  - 495
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a6/
LA  - ru
ID  - ZNSL_2020_495_a6
ER  - 
%0 Journal Article
%A E. S. Garai
%T On convergence of multidimensional workload with dominant service duration to a stable process
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 121-134
%V 495
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a6/
%G ru
%F ZNSL_2020_495_a6
E. S. Garai. On convergence of multidimensional workload with dominant service duration to a stable process. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 121-134. http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a6/

[1] E. S. Garai, “O skhodimosti mnogomernoi nagruzki v sisteme obsluzhivaniya k ustoichivomu protsessu”, Zap. nauchn. semin. POMI, 466, 2017, 96–108

[2] I. Kaj, M. S. Taqqu, “Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach”, In and Out of Equilibtium, v. II, Progress in Probability, 60, Birkhäuser, Basel, 2008, 383–427 | MR | Zbl

[3] M. A. Lifshits, Sluchainye protsessy – ot teorii k praktike, Lan, S.-Peterburg, 2016

[4] A. N. Shiryaev, Veroyatnost, Nauka, M., 1980

[5] A. V. Skorokhod, Sluchainye protsessy s nezavisimymi prirascheniyami, Nauka, M., 1964

[6] A. V. Skorokhod, Issledovaniya po teorii sluchainykh protsessov, izd-vo KGU, Kiev, 1961

[7] B. V. Gnedenko, Kurs teorii veroyatnostei, URSS, M., 2004 | MR

[8] I. A. Ibragimov, Yu. V. Linnik, Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965