On convergence of multidimensional workload with dominant service duration to a stable process
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 121-134
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A service system model introduced by I. Kai and M. S. Takku is considered. We prove a limit theorem on the convergence of finite-dimensional distributions of the total workload process with a multidimensional resource to the corresponding distributions of a multidimensional stable process. The situation is considered when the service durations prevails over the values of multidimensional resources.
			
            
            
            
          
        
      @article{ZNSL_2020_495_a6,
     author = {E. S. Garai},
     title = {On convergence of multidimensional workload with dominant service duration to a stable process},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {121--134},
     publisher = {mathdoc},
     volume = {495},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a6/}
}
                      
                      
                    TY - JOUR AU - E. S. Garai TI - On convergence of multidimensional workload with dominant service duration to a stable process JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 121 EP - 134 VL - 495 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a6/ LA - ru ID - ZNSL_2020_495_a6 ER -
E. S. Garai. On convergence of multidimensional workload with dominant service duration to a stable process. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 121-134. http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a6/