Energy of taut strings accompanying Wiener process and random walk in a band of variable width
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 64-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the article, kinetic energy of taut strings accompanying trajectory of a Wiener process or the one of random walk in a band of growing width is considered. It is shown that under certain assumptions on the band width the energy obeys the same strong law of large numbers as in the previously studied case of constant width.
@article{ZNSL_2020_495_a3,
     author = {D. I. Blinova and M. A. Lifshits},
     title = {Energy of taut strings accompanying {Wiener} process and random walk in a band of variable width},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {64--86},
     year = {2020},
     volume = {495},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a3/}
}
TY  - JOUR
AU  - D. I. Blinova
AU  - M. A. Lifshits
TI  - Energy of taut strings accompanying Wiener process and random walk in a band of variable width
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 64
EP  - 86
VL  - 495
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a3/
LA  - ru
ID  - ZNSL_2020_495_a3
ER  - 
%0 Journal Article
%A D. I. Blinova
%A M. A. Lifshits
%T Energy of taut strings accompanying Wiener process and random walk in a band of variable width
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 64-86
%V 495
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a3/
%G ru
%F ZNSL_2020_495_a3
D. I. Blinova; M. A. Lifshits. Energy of taut strings accompanying Wiener process and random walk in a band of variable width. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 64-86. http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a3/

[1] M. Grasmair, “The equivalence of the taut string algorithm and BV-regularization”, J. Math. Imaging Vis., 27 (2007), 59–66 | DOI | MR

[2] Z. Kabluchko, M. Lifshits, “Least energy approximation for processes with stationary increments”, J. Theoret. Probab., 30:1 (2017), 268–296 | DOI | MR | Zbl

[3] J. Komlos, P. Major, G. Tusnady, “An approximation of partial sums of independent RV'-s and the sample DF.I”, Z. Wahrscheinlichkeitstheor. verw. Geb., 32 (1975), 111–131 | DOI | MR | Zbl

[4] J. Komlos, P. Major, G. Tusnady, “An approximation of partial sums of independent RV'-s and the sample DF.II”, Z. Wahrscheinlichkeitstheor. verw. Geb., 34 (1976), 34–58 | DOI | MR | Zbl

[5] N. Kruglyak, E. Setterqvist, “Discrete taut strings and real interpolation”, J. Func. Anal., 270 (2016), 671–704 | DOI | MR | Zbl

[6] N. Kruglyak, E. Setterqvist, “Invariant $K$-minimal sets in the discrete and continuous setting”, J. Fourier Anal. Appl., 23 (2017), 572–611 | DOI | MR | Zbl

[7] M. Lifshits, Gaussian Random Functions, Kluwer, Dordrecht, 1995 | MR | Zbl

[8] M. Lifshits, E. Setterqvist, “Energy of taut string accompanying Wiener process”, Stoch. Process. Appl., 125 (2015), 401–427 | DOI | MR | Zbl

[9] M. Lifshits, A. Siuniaev, “Energy of taut strings accompanying random walk”, Probab. Math. Statist., 2019 (to appear) https://math.uni.wroc.pl/p̃ms/forthcoming_list/f.1761.pdf

[10] P. Major, “The approximation of partial sums of independent r.v.'s”, Z. Wahrscheinlichkeitstheor. verw. Geb., 35 (1976), 213–220 | DOI | MR | Zbl

[11] E. Schertzer, “Renewal structure of the Brownian taut string”, Stoch. Process. Appl., 128:2 (2018), 487–504 | DOI | MR | Zbl

[12] O. Scherzer et al., Variational Methods in Imaging, Applied Mathematical Sciences, 167, Springer, New York, 2009 | MR | Zbl

[13] A. I. Sakhanenko, “Skorost skhodimosti v printsipe invariantnosti dlya raznoraspredelennykh sluchainykh velichin s eksponentsialnymi momentami”, Trudy Instit. Matem. SO AN SSSR, 3 (1984), 4–49 | Zbl

[14] A. Yu. Zaitsev, “Tochnost silnoi gaussovskoi approksimatsii dlya summ nezavisimykh sluchainykh vektorov”, Uspekhi matem. nauk, 68:4(412) (2013), 129–172 | MR | Zbl