@article{ZNSL_2020_495_a3,
author = {D. I. Blinova and M. A. Lifshits},
title = {Energy of taut strings accompanying {Wiener} process and random walk in a band of variable width},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {64--86},
year = {2020},
volume = {495},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a3/}
}
TY - JOUR AU - D. I. Blinova AU - M. A. Lifshits TI - Energy of taut strings accompanying Wiener process and random walk in a band of variable width JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 64 EP - 86 VL - 495 UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a3/ LA - ru ID - ZNSL_2020_495_a3 ER -
D. I. Blinova; M. A. Lifshits. Energy of taut strings accompanying Wiener process and random walk in a band of variable width. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 64-86. http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a3/
[1] M. Grasmair, “The equivalence of the taut string algorithm and BV-regularization”, J. Math. Imaging Vis., 27 (2007), 59–66 | DOI | MR
[2] Z. Kabluchko, M. Lifshits, “Least energy approximation for processes with stationary increments”, J. Theoret. Probab., 30:1 (2017), 268–296 | DOI | MR | Zbl
[3] J. Komlos, P. Major, G. Tusnady, “An approximation of partial sums of independent RV'-s and the sample DF.I”, Z. Wahrscheinlichkeitstheor. verw. Geb., 32 (1975), 111–131 | DOI | MR | Zbl
[4] J. Komlos, P. Major, G. Tusnady, “An approximation of partial sums of independent RV'-s and the sample DF.II”, Z. Wahrscheinlichkeitstheor. verw. Geb., 34 (1976), 34–58 | DOI | MR | Zbl
[5] N. Kruglyak, E. Setterqvist, “Discrete taut strings and real interpolation”, J. Func. Anal., 270 (2016), 671–704 | DOI | MR | Zbl
[6] N. Kruglyak, E. Setterqvist, “Invariant $K$-minimal sets in the discrete and continuous setting”, J. Fourier Anal. Appl., 23 (2017), 572–611 | DOI | MR | Zbl
[7] M. Lifshits, Gaussian Random Functions, Kluwer, Dordrecht, 1995 | MR | Zbl
[8] M. Lifshits, E. Setterqvist, “Energy of taut string accompanying Wiener process”, Stoch. Process. Appl., 125 (2015), 401–427 | DOI | MR | Zbl
[9] M. Lifshits, A. Siuniaev, “Energy of taut strings accompanying random walk”, Probab. Math. Statist., 2019 (to appear) https://math.uni.wroc.pl/p̃ms/forthcoming_list/f.1761.pdf
[10] P. Major, “The approximation of partial sums of independent r.v.'s”, Z. Wahrscheinlichkeitstheor. verw. Geb., 35 (1976), 213–220 | DOI | MR | Zbl
[11] E. Schertzer, “Renewal structure of the Brownian taut string”, Stoch. Process. Appl., 128:2 (2018), 487–504 | DOI | MR | Zbl
[12] O. Scherzer et al., Variational Methods in Imaging, Applied Mathematical Sciences, 167, Springer, New York, 2009 | MR | Zbl
[13] A. I. Sakhanenko, “Skorost skhodimosti v printsipe invariantnosti dlya raznoraspredelennykh sluchainykh velichin s eksponentsialnymi momentami”, Trudy Instit. Matem. SO AN SSSR, 3 (1984), 4–49 | Zbl
[14] A. Yu. Zaitsev, “Tochnost silnoi gaussovskoi approksimatsii dlya summ nezavisimykh sluchainykh vektorov”, Uspekhi matem. nauk, 68:4(412) (2013), 129–172 | MR | Zbl