Quasi-infinite divisibility and three-pointprobability laws
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 305-316 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Discrete three-point probability laws are considered. We obtain necessary and sufficient conditions to belong to the new class of quasi-infinitely divisible laws. The results are formulated in terms of the points and their probabilities, and also with the property of separability from zero of the characteristic functions.
@article{ZNSL_2020_495_a18,
     author = {A. A. Khartov and I. A. Alexeev},
     title = {Quasi-infinite divisibility and three-pointprobability laws},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {305--316},
     year = {2020},
     volume = {495},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a18/}
}
TY  - JOUR
AU  - A. A. Khartov
AU  - I. A. Alexeev
TI  - Quasi-infinite divisibility and three-pointprobability laws
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 305
EP  - 316
VL  - 495
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a18/
LA  - ru
ID  - ZNSL_2020_495_a18
ER  - 
%0 Journal Article
%A A. A. Khartov
%A I. A. Alexeev
%T Quasi-infinite divisibility and three-pointprobability laws
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 305-316
%V 495
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a18/
%G ru
%F ZNSL_2020_495_a18
A. A. Khartov; I. A. Alexeev. Quasi-infinite divisibility and three-pointprobability laws. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 305-316. http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a18/

[1] V. M. Zolotarev, Sovremennaya teoriya summirovaniya nezavisimykh sluchainykh velichin, Nauka, M., 1986

[2] B. M. Levitan, Pochti-periodicheskie funktsii, GITTL, M., 1953 | MR

[3] Yu. V. Linnik, I. V. Ostrovskii, Razlozheniya sluchainykh velichin i vektorov, Nauka, M., 1972

[4] E. Lukach, Kharakteristicheskie funktsii, Nauka, M., 1979

[5] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987

[6] R. Cuppens, Decomposition of Multivariate Probabilities, Probability and Mathematical Statistics, 29, Academic Press [Harcourt Brace Jovanovich, Publishers, New York–London, 1975 | MR | Zbl

[7] N. Demni, Z. Mouayn, “Analysis of generalized Poisson distributions associated with higher Landau levels”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 18:4 (2015), 1550028.13 | DOI | MR | Zbl

[8] A. A. Khartov, “Compactness criteria for quasi-infinitely divisible distributions on the integers”, Statist. Probab. Letters, 153 (2019), 1–6 | DOI | MR | Zbl

[9] A. Lindner, L. Pan, K. Sato, “On quasi-infinitely divisible distributions”, Trans. Amer. Math. Soc., 370 (2018), 8483–8520 | DOI | MR | Zbl

[10] A. Lindner, K. Sato, “Properties of stationary distributions of a sequence of generalized Ornstein-Uhlenbeck processes”, Math. Nachr., 284:17–18 (2011), 2225–2248 | DOI | MR | Zbl

[11] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, 2013 | MR

[12] F. W. Steutel, K. van Harn, Infinite Divisibility of Probability Distributions on the Real Line, New York, Marcel Dekker Inc., 2004 | MR

[13] H. Zhang, Y. Liu, B. Li, “Notes on discrete compound Poisson model with applications to risk theory”, Insurance Math. Econom., 59 (2014), 325–336 | DOI | MR | Zbl