On a sufficient condition for a diffusion process will nether reach boundaries of some interval
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 291-304 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A one-dimensional diffusion semi-Markov process on some interval of its values is considered. Semi-Markov transition functions of the process dstisfy a second order differential equation with coefficients admitting possibility what the process stops inside this interval. In terms of coefficients of this equation some sufficient conditions are proved for the process will nether reach the left or right boundaries of this interval.
@article{ZNSL_2020_495_a17,
     author = {B. P. Harlamov},
     title = {On a sufficient condition for a diffusion process will nether reach boundaries of some interval},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {291--304},
     year = {2020},
     volume = {495},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a17/}
}
TY  - JOUR
AU  - B. P. Harlamov
TI  - On a sufficient condition for a diffusion process will nether reach boundaries of some interval
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 291
EP  - 304
VL  - 495
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a17/
LA  - ru
ID  - ZNSL_2020_495_a17
ER  - 
%0 Journal Article
%A B. P. Harlamov
%T On a sufficient condition for a diffusion process will nether reach boundaries of some interval
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 291-304
%V 495
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a17/
%G ru
%F ZNSL_2020_495_a17
B. P. Harlamov. On a sufficient condition for a diffusion process will nether reach boundaries of some interval. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 291-304. http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a17/

[1] E. B. Dynkin, Markovskie protsessy, FM, M., 1963

[2] I. I. Gikhman, A. V. Skorokhod, Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968 | MR

[3] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971

[4] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, Fizmatgiz, 1959

[5] B. P. Kharlamov, Nepreryvnye polumarkovskie protsessy, SPb, Nauka, 2001

[6] B. P. Kharlamov, “O nedostizhimoi granitse intervala znachenii diffuzionnogo protsessa: polumarkovskii podkhod”, Zap. nauchn. semin. POMI, 466, 2017, 313–330

[7] A. S. Cherny, H. J. Engelbert, Singular Stochastic Differential Equations, Springer, Berlin–Heidelberg–New York, 2005 | MR | Zbl