On a sufficient condition for a diffusion process will nether reach boundaries of some interval
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 291-304
Voir la notice de l'article provenant de la source Math-Net.Ru
A one-dimensional diffusion semi-Markov process on some interval of its values is considered. Semi-Markov transition functions of the process dstisfy a second order differential equation with coefficients admitting possibility what the process stops inside this interval. In terms of coefficients of this equation some sufficient conditions are proved for the process will nether reach the left or right boundaries of this interval.
@article{ZNSL_2020_495_a17,
author = {B. P. Harlamov},
title = {On a sufficient condition for a diffusion process will nether reach boundaries of some interval},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {291--304},
publisher = {mathdoc},
volume = {495},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a17/}
}
TY - JOUR AU - B. P. Harlamov TI - On a sufficient condition for a diffusion process will nether reach boundaries of some interval JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 291 EP - 304 VL - 495 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a17/ LA - ru ID - ZNSL_2020_495_a17 ER -
B. P. Harlamov. On a sufficient condition for a diffusion process will nether reach boundaries of some interval. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 291-304. http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a17/