Estimation of a function in a Gaussian stationary noise
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 277-290 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, we construct the upper bounds of the minimax risk in the estimation problem, as we observe the unknoun pseudo periodic function in a Gaussian stationary noise with the spectral density satisfying some local version of the Muckenhoupt condition.
@article{ZNSL_2020_495_a16,
     author = {V. N. Solev},
     title = {Estimation of a function in a {Gaussian} stationary noise},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {277--290},
     year = {2020},
     volume = {495},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a16/}
}
TY  - JOUR
AU  - V. N. Solev
TI  - Estimation of a function in a Gaussian stationary noise
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 277
EP  - 290
VL  - 495
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a16/
LA  - ru
ID  - ZNSL_2020_495_a16
ER  - 
%0 Journal Article
%A V. N. Solev
%T Estimation of a function in a Gaussian stationary noise
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 277-290
%V 495
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a16/
%G ru
%F ZNSL_2020_495_a16
V. N. Solev. Estimation of a function in a Gaussian stationary noise. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 277-290. http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a16/

[1] Yu. A. Rozanov, Statsionarnye protsessy, Mir, M., 1963

[2] I. A. Ibragimov, Yu. A. Rozanov, Gaussovskie protsessy, Mir, M., 1974

[3] Donoho David L., Liu Richard C., MacGibbon Brenda, “Minimax Risk Over Hyperrectangles, and Implications”, The Ann. Stat., 18:3, 1416–1437 | MR | Zbl

[4] W. Stepanoff, “Sur quelques generalisations des fonctions presque-periodiques”, Comptes Rendus, 181 (1925), 90–92 | Zbl

[5] N. Viner, R. Peli, Preobrazovanie Fure v kompleksnoi ploskosti, Nauka, M., 1964

[6] Garnett, B. John, Bounded analytic functions, Academic Press, N-Y, 1981 | MR | Zbl

[7] V. N. Solev, “Uslovie lokalnoi asimptoticheskoi normalnosti dlya gaussovskikh statsionarnykh protsessov”, Zap. nauchn. semin. POMI, 278, 2001, 225–247 | Zbl

[8] V. N. Solev, “Otsenka funktsii, nablyudaemoi na fone statsionarnogo shuma: diskretizatsiya”, Zap. nauchn. semin. POMI, 441, 2015, 286–298

[9] V. N. Solev, “Adaptivnaya otsenka funktsii, nablyudaemoi na fone gaussovskogo statsionarnogo shuma”, Zap. nauchn. semin. POMI, 454 (2016), 261–275

[10] V. N. Solev, “Lokalnaya versiya usloviya Makkenkhaupta i tochnost otsenivaniya neizvestnoi psevdo-periodicheskoi funktsii, nablyudaemoi na fone statsionarnogo shuma”, Zap. nauchn. semin. POMI, 466, 2017, 261–275

[11] V. N. Solev, “Otsenka funktsii v gaussovskom statsionarnom shume: novye spektralnye usloviya”, Zap. nauchn. semin. POMI, 486, 2018, 275–285

[12] S. V. Reshetov, “Minimaksnyi risk dlya kvadratichno vypuklykh mnozhestv”, Zap. nauchn. semin. POMI, 368, 2009, 181–189

[13] S. V. Reshetov, “Minimaksnaya otsenka psevdo-periodicheskoi funktsii, nablyudaemoi na fone statsionarnogo shuma”, Vestnik SPbGU, ser. 1, 2 (2010), 106–115