Estimation of a function in a Gaussian stationary noise
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 277-290

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we construct the upper bounds of the minimax risk in the estimation problem, as we observe the unknoun pseudo periodic function in a Gaussian stationary noise with the spectral density satisfying some local version of the Muckenhoupt condition.
@article{ZNSL_2020_495_a16,
     author = {V. N. Solev},
     title = {Estimation of a function in a {Gaussian} stationary noise},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {277--290},
     publisher = {mathdoc},
     volume = {495},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a16/}
}
TY  - JOUR
AU  - V. N. Solev
TI  - Estimation of a function in a Gaussian stationary noise
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 277
EP  - 290
VL  - 495
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a16/
LA  - ru
ID  - ZNSL_2020_495_a16
ER  - 
%0 Journal Article
%A V. N. Solev
%T Estimation of a function in a Gaussian stationary noise
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 277-290
%V 495
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a16/
%G ru
%F ZNSL_2020_495_a16
V. N. Solev. Estimation of a function in a Gaussian stationary noise. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 277-290. http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a16/