A limit theorem for regime-switching diffusion processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 267-276 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider an approximation of a regime-switching diffusion process by a family of regime-switching jump Markov processes and prove the corresponding limit theorem.
@article{ZNSL_2020_495_a15,
     author = {N. V. Smorodina and M. M. Faddeev},
     title = {A limit theorem for regime-switching diffusion processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {267--276},
     year = {2020},
     volume = {495},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a15/}
}
TY  - JOUR
AU  - N. V. Smorodina
AU  - M. M. Faddeev
TI  - A limit theorem for regime-switching diffusion processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 267
EP  - 276
VL  - 495
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a15/
LA  - ru
ID  - ZNSL_2020_495_a15
ER  - 
%0 Journal Article
%A N. V. Smorodina
%A M. M. Faddeev
%T A limit theorem for regime-switching diffusion processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 267-276
%V 495
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a15/
%G ru
%F ZNSL_2020_495_a15
N. V. Smorodina; M. M. Faddeev. A limit theorem for regime-switching diffusion processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 267-276. http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a15/

[1] M. Freidlin, Functional integration and partial differential equations, Annals of Mathematics Studies, 109, Princeton, 1985 | MR | Zbl

[2] I. I. Gikhman, A. V. Skorokhod, Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968 | MR

[3] R. Z. Khasminskii, “Ustoichivost stokhasticheskikh differentsialnykh uravnenii s pereklyucheniem rezhima”, Probl. peredachi inform., 48:3 (2012), 70–82 | Zbl

[4] Yin G., Zhu C., Hybrid Switching Diffusions, Springer-Verlag, New York, 2010 | MR | Zbl

[5] Shao-Qin Zhang, “Regime-switching diffusion processes: strong solutions and strong Feller property”, Stochastic Analysis and Applications, 38:1 (2020), 97–123 | DOI | MR | Zbl

[6] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972

[7] A. Friedman, Stochastic differential equations and applications, Academic Press, New York, 1975 | MR | Zbl

[8] I. I. Gikhman, A. V. Skorokhod, Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977 | MR

[9] A. N. Borodin, “Raspredeleniya funktsionalov ot diffuzii s pereklyucheniyami i skachkami”, Zap. nauchn. sem. POMI, 474, 2018, 28–45

[10] A. N. Borodin, “Raspredeleniya funktsionalov ot telegrafnogo protsessa i diffuzii s pereklyucheniyami”, Zap. nauchn. semin. POMI, 466, 2017, 38–53

[11] A. N. Borodin, “Predelnoe povedenie slozhnogo puassonovskogo protsessa s pereklyucheniyami mezhdu neskolkimi znacheniyami”, Zap. nauchn. sem. POMI, 486, 2019, 44–62

[12] X. Mao, C. Yuan, Stohastic Differential Equations with Markovian Switching, Imperial College Press, London, 2006 | MR