Some limit theorems for large deviations of sums of independent random variables with a common distribution function from the domain of normal attraction of a stable distribution
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 250-266

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine certain questions, related to the convergence rate in the so-called “precise asymptotics”, when a limiting law is stable (including the normal one). In particular, the results obtained in Gut and Steinebach, (Ann. Univ. Sci. Budapest. Sect. Comput. 39:95–110, 2013) are generalized and refined.
@article{ZNSL_2020_495_a14,
     author = {L. V. Rozovsky},
     title = {Some limit theorems for large deviations of sums of independent random variables with a common distribution function from the domain of normal attraction of a stable distribution},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {250--266},
     publisher = {mathdoc},
     volume = {495},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a14/}
}
TY  - JOUR
AU  - L. V. Rozovsky
TI  - Some limit theorems for large deviations of sums of independent random variables with a common distribution function from the domain of normal attraction of a stable distribution
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 250
EP  - 266
VL  - 495
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a14/
LA  - ru
ID  - ZNSL_2020_495_a14
ER  - 
%0 Journal Article
%A L. V. Rozovsky
%T Some limit theorems for large deviations of sums of independent random variables with a common distribution function from the domain of normal attraction of a stable distribution
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 250-266
%V 495
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a14/
%G ru
%F ZNSL_2020_495_a14
L. V. Rozovsky. Some limit theorems for large deviations of sums of independent random variables with a common distribution function from the domain of normal attraction of a stable distribution. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 250-266. http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a14/