New goodness-of-fit tests for Pareto I type distribution, based on a characterization
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 237-249
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we construct two new goodness-of-fit tests for Pareto I type distribution family with an arbitrary shape-parameter $\lambda$, based on the new received characterization. We describe their limiting distributions, calculate local Bahadur efficiencies under close alternatives and perform asymptotic comparison of our test statistics.
@article{ZNSL_2020_495_a13,
     author = {I. A. Ragozin},
     title = {New goodness-of-fit tests for {Pareto} {I} type distribution, based on a characterization},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {237--249},
     year = {2020},
     volume = {495},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a13/}
}
TY  - JOUR
AU  - I. A. Ragozin
TI  - New goodness-of-fit tests for Pareto I type distribution, based on a characterization
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 237
EP  - 249
VL  - 495
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a13/
LA  - ru
ID  - ZNSL_2020_495_a13
ER  - 
%0 Journal Article
%A I. A. Ragozin
%T New goodness-of-fit tests for Pareto I type distribution, based on a characterization
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 237-249
%V 495
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a13/
%G ru
%F ZNSL_2020_495_a13
I. A. Ragozin. New goodness-of-fit tests for Pareto I type distribution, based on a characterization. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 237-249. http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a13/

[1] M. Ahsanullah, M. Z. Anis, “Some characterizations of exponential distribution”, Inter. J. Stat. Probab., 6:5 (2017), 132–139 | DOI

[2] B. C. Arnorld, Pareto Distributions Second edition, CRC Press, Boca Raton, 2014 | MR

[3] V. S.Korolyuk, Yu. V. Borovskikh, Teoriya $U$-statistik, Naukova dumka, 1989 | MR | Zbl

[4] Ya. Yu. Nikitin, E. V. Ponikarov, “Rough large deviation asymptotics of Chernoff type for von Mises functionals and $U$-statistics”, Proc. St. Petersburg Math. Soc., 7 (1999), 124–167 | MR

[5] Ya. Yu. Nikitin, I. Peaucelle, “Efficiency and local optimality of distribution-free tests based on $U$- and $V$-statistics”, Metron, LXII (2004), 185–200 | MR | Zbl

[6] Ya. Yu. Nikitin, Asimptoticheskaya effektivnost neparametricheskikh statisticheskikh kriteriev, Nauka, M., 1995

[7] R. R. Bahadur, Some limit theorems in statistics, SIAM, Philadelphia, 1971 | MR | Zbl

[8] R. R. Bahadur, “Stochastic comparison of tests”, Ann. Math. Stat., 31 (1960), 276–295 | DOI | MR | Zbl

[9] Ya. Yu. Nikitin, “Large deviations of $U$-empirical Kolmogorov-Smirnov tests, and their efficiency”, J. Nonpar. Stat., 22 (2010), 649–668 | DOI | MR | Zbl

[10] Ya. Yu. Nikitin, K. Yu. Volkova, “Efficiency of Exponentiality Tests Based on a Special Property of Exponential Distribution”, Math. Methods Statist., 25:1 (2016) | DOI | MR | Zbl

[11] M. Obradović, M. Jovanovis, B. Milo$\check{s}$ević, “Goodness-of-fit tests for Pareto distribution based on a characterization and their asymptotics”, J. Theor. Appl. Statist., 49:5 (2015), 1026–1041 | MR | Zbl