Voir la notice du chapitre de livre
@article{ZNSL_2020_495_a13,
author = {I. A. Ragozin},
title = {New goodness-of-fit tests for {Pareto} {I} type distribution, based on a characterization},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {237--249},
year = {2020},
volume = {495},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a13/}
}
I. A. Ragozin. New goodness-of-fit tests for Pareto I type distribution, based on a characterization. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 237-249. http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a13/
[1] M. Ahsanullah, M. Z. Anis, “Some characterizations of exponential distribution”, Inter. J. Stat. Probab., 6:5 (2017), 132–139 | DOI
[2] B. C. Arnorld, Pareto Distributions Second edition, CRC Press, Boca Raton, 2014 | MR
[3] V. S.Korolyuk, Yu. V. Borovskikh, Teoriya $U$-statistik, Naukova dumka, 1989 | MR | Zbl
[4] Ya. Yu. Nikitin, E. V. Ponikarov, “Rough large deviation asymptotics of Chernoff type for von Mises functionals and $U$-statistics”, Proc. St. Petersburg Math. Soc., 7 (1999), 124–167 | MR
[5] Ya. Yu. Nikitin, I. Peaucelle, “Efficiency and local optimality of distribution-free tests based on $U$- and $V$-statistics”, Metron, LXII (2004), 185–200 | MR | Zbl
[6] Ya. Yu. Nikitin, Asimptoticheskaya effektivnost neparametricheskikh statisticheskikh kriteriev, Nauka, M., 1995
[7] R. R. Bahadur, Some limit theorems in statistics, SIAM, Philadelphia, 1971 | MR | Zbl
[8] R. R. Bahadur, “Stochastic comparison of tests”, Ann. Math. Stat., 31 (1960), 276–295 | DOI | MR | Zbl
[9] Ya. Yu. Nikitin, “Large deviations of $U$-empirical Kolmogorov-Smirnov tests, and their efficiency”, J. Nonpar. Stat., 22 (2010), 649–668 | DOI | MR | Zbl
[10] Ya. Yu. Nikitin, K. Yu. Volkova, “Efficiency of Exponentiality Tests Based on a Special Property of Exponential Distribution”, Math. Methods Statist., 25:1 (2016) | DOI | MR | Zbl
[11] M. Obradović, M. Jovanovis, B. Milo$\check{s}$ević, “Goodness-of-fit tests for Pareto distribution based on a characterization and their asymptotics”, J. Theor. Appl. Statist., 49:5 (2015), 1026–1041 | MR | Zbl