@article{ZNSL_2020_495_a12,
author = {S. M. Novikov},
title = {New results on asymptotic independence of random elements},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {209--236},
year = {2020},
volume = {495},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a12/}
}
S. M. Novikov. New results on asymptotic independence of random elements. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 209-236. http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a12/
[1] P. Billingsley, Convergence of probability measures, Wiley Series in Probability and Mathematical Statistics, John Wiley, New York, 1968, xii+253 pp. | MR | Zbl
[2] N. Dunford, J. T. Schwartz, Linear operators, v. 1, General theory, Interscience Publichers, New York–London, 1958, 874 pp. | MR | Zbl
[3] Y. Davydov, V. Rotar', “On asymptotic proximity of distributions”, J. Theor. Probab., 22:1 (2009), 82–98 | DOI | MR | Zbl
[4] R. M. Dudley, Real Analysis and Probability, 2nd edition, Cambridge University Press, 2002, 568 pp. | MR | Zbl
[5] Z. Frolik, “Existence of $l_{\infty}$-partitions of unity”, Rend. Semin. Mat., Torino, 42:1 (1984), 9–14 | MR | Zbl
[6] L. Devroye, A. Mehrabian, T. Reddad, The total variation distance between high-dimensional Gaussians, 2019, arXiv: 1810.08693
[7] A. N. Shiryaev, Veroyatnost, V 2 kn., 3-e izd., pererab. i dop., MTsNMO, M., 2004, 512 pp.
[8] L. Pardo, Statistical Inference Based on Divergence Measures, Statistics: Textbooks and Monographs, 185, Chapman $\$ Hall/CRC, Boca Raton, FL, 2006 | MR | Zbl
[9] Y. Davydov, S. Novikov, Remarks on asymptotic independence, 2019, arXiv: 1910.04243
[10] M. A. Lifshits, Lektsii po gaussovskim protsessam, Uchebnoe posobie, Izdatelstvo ‘Lan’', SPb., 2016, 192 pp.
[11] A. S. Kechris, Classical Descriptive Set Theory, Springer-Verlag, Berlin–New York, 1995, 402 pp. | MR | Zbl
[12] J. K. Brooks, R. V. Chacon, “Continuity and Compactness of measures”, Adv. in Math., 37:1 (1980), 16–26 | DOI | MR | Zbl