Random sections of spherical convex bodies
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 198-208 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $K\subset\mathbb S^{d-1}$ be a convex spherical body. Denote by $\Delta(K)$ the distance between two random points in $K$ and denote by $\sigma(K)$ the length of a random chord of $K$. We explicitly express the distribution of $\Delta(K)$ viathe distribution of $\sigma(K)$. From this we find the density of distribution of $\Delta(K)$ when $K$ is a spherical cap.
@article{ZNSL_2020_495_a11,
     author = {T. D. Moseeva and A. S. Tarasov and D. N. Zaporozhets},
     title = {Random sections of spherical convex bodies},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {198--208},
     year = {2020},
     volume = {495},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a11/}
}
TY  - JOUR
AU  - T. D. Moseeva
AU  - A. S. Tarasov
AU  - D. N. Zaporozhets
TI  - Random sections of spherical convex bodies
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 198
EP  - 208
VL  - 495
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a11/
LA  - ru
ID  - ZNSL_2020_495_a11
ER  - 
%0 Journal Article
%A T. D. Moseeva
%A A. S. Tarasov
%A D. N. Zaporozhets
%T Random sections of spherical convex bodies
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 198-208
%V 495
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a11/
%G ru
%F ZNSL_2020_495_a11
T. D. Moseeva; A. S. Tarasov; D. N. Zaporozhets. Random sections of spherical convex bodies. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 198-208. http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a11/

[1] N. Aharonyan, V. Ohanyan, “Moments of the distance between two random points”, Model. Artif. Intell., 10:2 (2016), 64–70

[2] E. Arbeiter, M. Zäle, “Kinematic relations for Hausdorff moment measures in spherical spaces”, Math. Nachr., 153 (1991), 333–348 | DOI | MR | Zbl

[3] G. D. Chakerian, “Inequalities for the difference body of a convex body”, Proc. Amer. Math. Soc., 18 (1967), 879–884 | DOI | MR | Zbl

[4] M. Crofton, “Probability”, Encyclopaedia Britannica, 19, 1885, 758–788

[5] J. F. C. Kingman, “Random secants of a convex body”, J. Appl. Probab., 6 (1969), 660–672 | DOI | MR | Zbl

[6] H. Hadwiger, “Uber zwei quadratische Distanzintegrale für Eikörper”, Arch. Math. (Basel), 3 (1952), 142–144 | DOI | MR | Zbl

[7] T. Moseeva, “Sluchainye secheniya vypuklykh tel”, Zap. nauchn. semin. POMI, 486, 2019, 190–199 | MR

[8] R. Schneider, W. Weil, Stochastic, Integral Geometry, Springer, 2008 | MR | Zbl