@article{ZNSL_2020_495_a10,
author = {T. D. Moseeva},
title = {Distribution of the volume of weighted {Gaussian} simplex},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {187--197},
year = {2020},
volume = {495},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a10/}
}
T. D. Moseeva. Distribution of the volume of weighted Gaussian simplex. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 187-197. http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a10/
[1] T. W. Anderson, An introduction to multivariate statistical analysis, Wiley Series in Probability and Statistics, 2003 | MR | Zbl
[2] J. Grote, Z. Kabluchko. Ch. Thäle, “Limit theorems for random simplices in high dimensions”, ALEA Lat. Am. J. Probab. Math. Stat., 16:1 (2019), 141–177 | DOI | MR | Zbl
[3] H. H. Nguyen, V. Vu, “Random matrices: law of the determinant”, Ann. Probab., 42:1 (2014), 146–167 | DOI | MR | Zbl
[4] G. Paouris, P. Pivovarov, “Small-ball probabilities for the volume of random convex sets”, Discrete Comput. Geom., 49:3 (2013), 601–646 | DOI | MR | Zbl
[5] R. Schneider, W. Weil, Stochastic and integral geometry, Probability and its Applications (New York), Springer-Verlag, Berlin, 2008 | DOI | MR | Zbl
[6] J. Radon-Furling, D. Zaporozhets, Convex hulls of several multidimensional Gaussian random walks, 2020, arXiv: 2007.0276 | MR
[7] R. E. Miles, “Isotropic random simplices”, Advances in Applied Probability, 3:2 (1971), 353–382 | DOI | MR | Zbl