Asymptotic normality in a discrete analog of the parking problem
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 9-36
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article, the authors study the behavior of the central moments of higher orders in a discrete version of the “parking problem”. For these moments, asymptotic behavior is obtained when the length of the filled segment increases indefinitely. This made it possible to prove the asymptotic normality of the total length of the allocated intervals of length $ l $ on an interval of length $ n $ for any fixed $ l \ge 2 $, when $ n $ increases unboundedly.
@article{ZNSL_2020_495_a1,
author = {S. M. Ananjevskii and N. A. Kryukov},
title = {Asymptotic normality in a discrete analog of the parking problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {9--36},
publisher = {mathdoc},
volume = {495},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a1/}
}
S. M. Ananjevskii; N. A. Kryukov. Asymptotic normality in a discrete analog of the parking problem. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 9-36. http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a1/