Probability measure near the boundary of tensor power decomposition for $\mathfrak{so}_{2n+1}$
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 219-227
Voir la notice de l'article provenant de la source Math-Net.Ru
Character measure is a probability measure on irreducible representations of a semisimple Lie algebra. It appears from the decomposition into irreducibles of tensor power of a fundamental representation. In this paper we calculate the asymptotics of character measure on representations of $\mathfrak{so}_{2n+1}$ in the regime near the boundary of weight diagram. We find out that it converges to a Poisson-type distribution.
@article{ZNSL_2020_494_a9,
author = {A.A. Nazarov and V. L. Chizhikova},
title = {Probability measure near the boundary of tensor power decomposition for $\mathfrak{so}_{2n+1}$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {219--227},
publisher = {mathdoc},
volume = {494},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a9/}
}
TY - JOUR
AU - A.A. Nazarov
AU - V. L. Chizhikova
TI - Probability measure near the boundary of tensor power decomposition for $\mathfrak{so}_{2n+1}$
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2020
SP - 219
EP - 227
VL - 494
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a9/
LA - en
ID - ZNSL_2020_494_a9
ER -
%0 Journal Article
%A A.A. Nazarov
%A V. L. Chizhikova
%T Probability measure near the boundary of tensor power decomposition for $\mathfrak{so}_{2n+1}$
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 219-227
%V 494
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a9/
%G en
%F ZNSL_2020_494_a9
A.A. Nazarov; V. L. Chizhikova. Probability measure near the boundary of tensor power decomposition for $\mathfrak{so}_{2n+1}$. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 219-227. http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a9/