Probability measure near the boundary of tensor power decomposition for $\mathfrak{so}_{2n+1}$
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 219-227 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Character measure is a probability measure on irreducible representations of a semisimple Lie algebra. It appears from the decomposition into irreducibles of tensor power of a fundamental representation. In this paper we calculate the asymptotics of character measure on representations of $\mathfrak{so}_{2n+1}$ in the regime near the boundary of weight diagram. We find out that it converges to a Poisson-type distribution.
@article{ZNSL_2020_494_a9,
     author = {A.A. Nazarov and V. L. Chizhikova},
     title = {Probability measure near the boundary of tensor power decomposition for $\mathfrak{so}_{2n+1}$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {219--227},
     year = {2020},
     volume = {494},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a9/}
}
TY  - JOUR
AU  - A.A. Nazarov
AU  - V. L. Chizhikova
TI  - Probability measure near the boundary of tensor power decomposition for $\mathfrak{so}_{2n+1}$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 219
EP  - 227
VL  - 494
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a9/
LA  - en
ID  - ZNSL_2020_494_a9
ER  - 
%0 Journal Article
%A A.A. Nazarov
%A V. L. Chizhikova
%T Probability measure near the boundary of tensor power decomposition for $\mathfrak{so}_{2n+1}$
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 219-227
%V 494
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a9/
%G en
%F ZNSL_2020_494_a9
A.A. Nazarov; V. L. Chizhikova. Probability measure near the boundary of tensor power decomposition for $\mathfrak{so}_{2n+1}$. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 219-227. http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a9/

[1] A. M. Vershik, S. V. Kerov, “Asymptotics of plancherel measure of symmetrical group and limit form of young tables”, Dokl. Akad. Nauk SSSR, 233:6 (1977), 1024–1027 | MR | Zbl

[2] B. F. Logan, L. A. Shepp, “A variational problem for random young tableaux”, Adv. Math., 26:2 (1977), 206–222 | DOI | MR | Zbl

[3] S. M. Ulam, “Monte carlo calculations in problems of mathematical physics”, Modern Mathematics for the Engineers, 1961, 261–281 | MR

[4] S. V. Kerov, “On asymptotic distribution of symmetry types of high rank tensors”, Zap. Nauch. Semin. POMI, 155, 1986, 181–186 | MR | Zbl

[5] A. A. Nazarov, O. V. Postnova, “The limit shape of a probability measure on a tensor product of modules of the $B_n$ algebra”, J. Math. Sci., 240:5 (2019), 556–566 | DOI | MR | Zbl

[6] T. Tate, S. Zelditch, “Lattice path combinatorics and asymptotics of multiplicities of weights in tensor powers”, J. Funct. Anal., 217:2 (2004), 402–447 | DOI | MR | Zbl

[7] O. Postnova, N. Reshetikhin, “On multiplicities of irreducibles in large tensor product of representations of simple lie algebras”, Let. Math. Phys., 110:1 (2020), 147–178 | DOI | MR | Zbl

[8] P. P. Kulish, V.D. Lyakhovsky, O.V. Postnova, Tensor power decomposition. $B_{n}$ case, Journal of Physics: Conference Series, 343, 2012 | DOI