Six-vertex model as a Grassmann integral, one-point function, and the arctic ellipse
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 168-218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We formulate the six-vertex model with domain wall boundary conditions in terms of an integral over Grassmann variables. Relying on this formulation, we propose a method of calculation of correlation functions of the model for the case of the weights satisfying the free-fermion condition. We consider here in details the one-point correlation function describing the probability of a given state on arbitrary edge of the lattice, or, – polarization. We show that in the thermodynamic limit, performed such that the lattice is scaled to the square of unit side length, this function exhibits the “arctic ellipse” phenomenon, in agreement with previous studies on random domino tilings of Aztec diamonds: it approaches its limiting values outside of an ellipse inscribed into this square, and takes continuously intermediate values inside the ellipse. We derive also scaling properties of the one-point function in the vicinity of an arbitrary point of the arctic ellipse and in the vicinities of the points where the ellipse touches the boundary.
@article{ZNSL_2020_494_a8,
     author = {V. S. Kapitonov and A. G. Pronko},
     title = {Six-vertex model as a {Grassmann} integral, one-point function, and the arctic ellipse},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {168--218},
     year = {2020},
     volume = {494},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a8/}
}
TY  - JOUR
AU  - V. S. Kapitonov
AU  - A. G. Pronko
TI  - Six-vertex model as a Grassmann integral, one-point function, and the arctic ellipse
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 168
EP  - 218
VL  - 494
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a8/
LA  - en
ID  - ZNSL_2020_494_a8
ER  - 
%0 Journal Article
%A V. S. Kapitonov
%A A. G. Pronko
%T Six-vertex model as a Grassmann integral, one-point function, and the arctic ellipse
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 168-218
%V 494
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a8/
%G en
%F ZNSL_2020_494_a8
V. S. Kapitonov; A. G. Pronko. Six-vertex model as a Grassmann integral, one-point function, and the arctic ellipse. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 168-218. http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a8/

[1] V. E. Korepin, “Calculations of norms of Bethe wave functions”, Commun. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl

[2] A. G. Izergin, “Partition function of the six-vertex model in the finite volume”, Sov. Phys. Dokl., 32 (1987), 878–879 | MR | Zbl

[3] A. G. Izergin, D. A. Coker, V. E. Korepin, “Determinant formula for the six-vertex model”, J. Phys. A, 25 (1992), 4315–4334 | DOI | MR | Zbl

[4] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[5] D. M. Bressoud, Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[6] K. Eloranta, “Diamond ice”, J. Stat. Phys., 96 (1999), 1091–1109 | DOI | MR | Zbl

[7] H. Cohn, N. Elkies, J. Propp, “Local statistics for random domino tilings of the Aztec diamond”, Duke Math. J., 85 (1996), 117–166 | DOI | MR | Zbl

[8] W. Jockush, J. Propp, P. Shor, Random domino tilings and the arctic circle theorem, arXiv: math.CO/9801068

[9] H. Cohn, R. Kenyon, J. Propp, “A variational priciple for domino tilings”, J. Amer. Math. Soc., 14 (2001), 297–346 | DOI | MR | Zbl

[10] N. Destainville, “Entropy and boundary conditions in random rhombus tilings”, J. Phys. A, 31 (1998), 6123 | DOI | MR | Zbl

[11] H. Cohn, M. Larsen, J. Propp, “The shape of a typical boxed plane partition”, New York J. Math., 4 (1998), 137–165 | MR | Zbl

[12] R. Kenyon, A. Okounkov, “Limit shapes and the complex Burgers equation”, Acta Math., 199 (2007), 263–302 | DOI | MR | Zbl

[13] R. Kenyon, A. Okounkov, S. Sheffield, “Dimers and amoebae”, Ann. Math., 163 (2006), 1019–1056 | DOI | MR | Zbl

[14] N. Elkies, G. Kuperberg, M. Larsen, J. Propp, “Alternating-sign matrices and domino tilings”, J. Algwebraic Combin., 1992, no. 1, 111–132 ; 219–234 | DOI | MR | Zbl | MR | Zbl

[15] V. E. Korepin, P. Zinn-Justin, “Thermodynamic limit of the six-vertex model with domain wall boundary conditions”, J. Phys. A, 33 (2000), 7053–7066 | DOI | MR | Zbl

[16] P. Zinn-Justin, “Six-vertex model with domain wall boundary conditions and one-matrix model”, Phys. Rev. E, 62 (2000), 3411–3418 | DOI | MR

[17] P. Zinn-Justin, The influence of boundary conditions in the six-vertex model

[18] K. Palamarchuk, N. Reshetikhin, “The six-vertex model with fixed boundary conditions”, PoS (Solvay), 2008, 012

[19] O. F. Syljuasen, M. B. Zvonarev, “Monte-Carlo simulations of vertex models”, Phys. Rev. E, 70 (2004), 016118 | DOI

[20] D. Allison, N. Reshetikhin, “Numerical study of the $6$-vertex model with domain wall boundary conditions”, Ann. Inst. Fourier (Grenoble), 55 (2005), 1847–1869 | DOI | MR | Zbl

[21] N. M. Bogoliubov, A. V. Kitaev, M. B. Zvonarev, “Boundary polarization in the six-vertex model”, Phys. Rev. E, 65 (2002), 026126 | DOI | MR

[22] N. M. Bogoliubov, A. G. Pronko, M. B. Zvonarev, “Boundary correlation functions of the six-vertex model”, J. Phys. A, 35 (2002), 5525–5541 | DOI | MR | Zbl

[23] O. Foda, I. Preston, “On the correlation functions of the domain wall six vertex model”, J. Stat. Mech. Theory Exp., 2004:2004 (1100), P11001 | MR

[24] F. Colomo, A. G. Pronko, “On two-point boundary correlations in the six-vertex model with domain wall boundary conditions”, J. Stat. Mech. Theory Exp., 2005 (2005), P05010 | MR | Zbl

[25] F. Colomo, A. G. Pronko, “Emptiness formation probability in the domain-wall six-vertex model”, Nucl. Phys. B, 798 (2008), 340–362 | DOI | MR | Zbl

[26] F. Colomo, A. G. Pronko, “The limit shape of large alternating-sign matrices”, SIAM J. Discrete Math., 24 (2010), 1558–1571 | DOI | MR | Zbl

[27] F. Colomo, A. G. Pronko, “The arctic curve of the domain-wall six-vertex model”, J. Stat. Phys., 138 (2010), 662–700 | DOI | MR | Zbl

[28] F. Colomo, A. G. Pronko, P. Zinn-Justin, “The arctic curve of the domain-wall six-vertex model in its anti-ferroelectric regime”, J. Stat. Mech. Theory Exp., 2010 (2010), L03002 | DOI | MR | Zbl

[29] K. Motegi, “Boundary correlation functions of the six and nineteen vertex models with domain wall boundary conditions”, Physica A, 390 (2011), 3337–3347 | DOI | MR

[30] F. Colomo, A. G. Pronko, “An approach for calculating correlation functions in the six-vertex model with domain wall boundary conditions”, Theor. Math. Phys., 171:2 (2012), 254–270 | DOI | MR | Zbl

[31] P. L. Ferrari, H. Spohn, “Domino tilings and the six-vertex model at its free fermion point”, J. Phys. A, 39 (2006), 10297–10306 | DOI | MR | Zbl

[32] C. Destri, H. J. de Vega, “Light-cone lattice approach to fermionic theories in 2D: The massive Thirring model”, Nucl. Phys. B, 290 (1987), 363–391 | DOI | MR

[33] Y. Umeno, M. Shiroishi, M. Wadati, “Fermionic $R$-operator for the fermion chain model”, J. Phys. Soc. Japan, 67:6 (1998), 1930–1935 | DOI | MR | Zbl

[34] F. Göhmann, V. E. Korepin, “Solution of the quantum inverse problem”, J. Phys. A, 33 (2000), 1199–1220 | DOI | MR | Zbl

[35] F. A. Berezin, The method of second quantization, Pure and applied physics. A series of monographs and textbooks, Academic Press, New York, 1966 | MR | Zbl

[36] F. A. Berezin, Introduction to Superanalysis, Mathematical Physics and Applied Mathematics, D. Reidel Publishing Co., Dordrecht, 1987 | MR | Zbl

[37] K. E. Cahill, R. J. Glauber, “Density operators for fermions”, Phys. Rev. A, 59 (1999), 1539–1555 | DOI

[38] M. Combescure, D. Robert, “Fermionic coherent states”, J. Phys. A, 45 (2012), 244005 | DOI | MR | Zbl

[39] V. S. Kapitonov, A. G. Pronko, “The five-vertex model and boxed plane partitions”, J. Math. Sci. (N.Y.), 158 (2009), 858–867 | DOI | MR | Zbl

[40] V. S. Kapitonov, A. G. Pronko, “Weighted enumerations of boxed plane partitions and the inhomogeneous five-vertex model”, J. Math. Sci. (N. Y.), 192 (2013), 70–80 | DOI | MR | Zbl

[41] M. V. Fedoryuk, The Saddle-Point Method, Nauka, M., 1977 (in Russian) | MR | Zbl

[42] F. W. J. Olver, Asymptotics and Special Functions, A. K. Peters Ltd., Wellesley, MA, 1974 | MR

[43] A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integrals and series, v. 3, More special functions, Gordon and Breach Science Publishers, New York, NY, 1990 | MR | Zbl

[44] C. A. Tracy, H. Widom, “Level spacing distributions and the Airy kernel”, Commun. Math. Phys., 159 (1994), 151–174 | DOI | MR | Zbl

[45] M. L. Mehta, Random Matrices, 3rd. ed., Elsevier, Amsterdam, 2004 | MR | Zbl

[46] K. Johansson, “The arctic circle boundary and the Airy process”, Ann. Probab., 33 (2005), 1–30 | DOI | MR | Zbl

[47] A. Yu. Okounkov, N. Yu. Reshetikhin, “The birth of a random matrix”, Mosc. Math. J., 6:3 (2006), 553–566 | DOI | MR | Zbl

[48] K. Johansson, E. Nordenstam, “Eigenvalues of GUE minors”, Electron. J. Probab., 11 (2006), 1342–1371 | DOI | MR | Zbl

[49] F. Colomo, A. G. Pronko, “Third-order phase transition in random tilings”, Phys. Rev. E, 88 (2013), 042125 | DOI