@article{ZNSL_2020_494_a8,
author = {V. S. Kapitonov and A. G. Pronko},
title = {Six-vertex model as a {Grassmann} integral, one-point function, and the arctic ellipse},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {168--218},
year = {2020},
volume = {494},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a8/}
}
TY - JOUR AU - V. S. Kapitonov AU - A. G. Pronko TI - Six-vertex model as a Grassmann integral, one-point function, and the arctic ellipse JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 168 EP - 218 VL - 494 UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a8/ LA - en ID - ZNSL_2020_494_a8 ER -
V. S. Kapitonov; A. G. Pronko. Six-vertex model as a Grassmann integral, one-point function, and the arctic ellipse. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 168-218. http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a8/
[1] V. E. Korepin, “Calculations of norms of Bethe wave functions”, Commun. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl
[2] A. G. Izergin, “Partition function of the six-vertex model in the finite volume”, Sov. Phys. Dokl., 32 (1987), 878–879 | MR | Zbl
[3] A. G. Izergin, D. A. Coker, V. E. Korepin, “Determinant formula for the six-vertex model”, J. Phys. A, 25 (1992), 4315–4334 | DOI | MR | Zbl
[4] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[5] D. M. Bressoud, Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[6] K. Eloranta, “Diamond ice”, J. Stat. Phys., 96 (1999), 1091–1109 | DOI | MR | Zbl
[7] H. Cohn, N. Elkies, J. Propp, “Local statistics for random domino tilings of the Aztec diamond”, Duke Math. J., 85 (1996), 117–166 | DOI | MR | Zbl
[8] W. Jockush, J. Propp, P. Shor, Random domino tilings and the arctic circle theorem, arXiv: math.CO/9801068
[9] H. Cohn, R. Kenyon, J. Propp, “A variational priciple for domino tilings”, J. Amer. Math. Soc., 14 (2001), 297–346 | DOI | MR | Zbl
[10] N. Destainville, “Entropy and boundary conditions in random rhombus tilings”, J. Phys. A, 31 (1998), 6123 | DOI | MR | Zbl
[11] H. Cohn, M. Larsen, J. Propp, “The shape of a typical boxed plane partition”, New York J. Math., 4 (1998), 137–165 | MR | Zbl
[12] R. Kenyon, A. Okounkov, “Limit shapes and the complex Burgers equation”, Acta Math., 199 (2007), 263–302 | DOI | MR | Zbl
[13] R. Kenyon, A. Okounkov, S. Sheffield, “Dimers and amoebae”, Ann. Math., 163 (2006), 1019–1056 | DOI | MR | Zbl
[14] N. Elkies, G. Kuperberg, M. Larsen, J. Propp, “Alternating-sign matrices and domino tilings”, J. Algwebraic Combin., 1992, no. 1, 111–132 ; 219–234 | DOI | MR | Zbl | MR | Zbl
[15] V. E. Korepin, P. Zinn-Justin, “Thermodynamic limit of the six-vertex model with domain wall boundary conditions”, J. Phys. A, 33 (2000), 7053–7066 | DOI | MR | Zbl
[16] P. Zinn-Justin, “Six-vertex model with domain wall boundary conditions and one-matrix model”, Phys. Rev. E, 62 (2000), 3411–3418 | DOI | MR
[17] P. Zinn-Justin, The influence of boundary conditions in the six-vertex model
[18] K. Palamarchuk, N. Reshetikhin, “The six-vertex model with fixed boundary conditions”, PoS (Solvay), 2008, 012
[19] O. F. Syljuasen, M. B. Zvonarev, “Monte-Carlo simulations of vertex models”, Phys. Rev. E, 70 (2004), 016118 | DOI
[20] D. Allison, N. Reshetikhin, “Numerical study of the $6$-vertex model with domain wall boundary conditions”, Ann. Inst. Fourier (Grenoble), 55 (2005), 1847–1869 | DOI | MR | Zbl
[21] N. M. Bogoliubov, A. V. Kitaev, M. B. Zvonarev, “Boundary polarization in the six-vertex model”, Phys. Rev. E, 65 (2002), 026126 | DOI | MR
[22] N. M. Bogoliubov, A. G. Pronko, M. B. Zvonarev, “Boundary correlation functions of the six-vertex model”, J. Phys. A, 35 (2002), 5525–5541 | DOI | MR | Zbl
[23] O. Foda, I. Preston, “On the correlation functions of the domain wall six vertex model”, J. Stat. Mech. Theory Exp., 2004:2004 (1100), P11001 | MR
[24] F. Colomo, A. G. Pronko, “On two-point boundary correlations in the six-vertex model with domain wall boundary conditions”, J. Stat. Mech. Theory Exp., 2005 (2005), P05010 | MR | Zbl
[25] F. Colomo, A. G. Pronko, “Emptiness formation probability in the domain-wall six-vertex model”, Nucl. Phys. B, 798 (2008), 340–362 | DOI | MR | Zbl
[26] F. Colomo, A. G. Pronko, “The limit shape of large alternating-sign matrices”, SIAM J. Discrete Math., 24 (2010), 1558–1571 | DOI | MR | Zbl
[27] F. Colomo, A. G. Pronko, “The arctic curve of the domain-wall six-vertex model”, J. Stat. Phys., 138 (2010), 662–700 | DOI | MR | Zbl
[28] F. Colomo, A. G. Pronko, P. Zinn-Justin, “The arctic curve of the domain-wall six-vertex model in its anti-ferroelectric regime”, J. Stat. Mech. Theory Exp., 2010 (2010), L03002 | DOI | MR | Zbl
[29] K. Motegi, “Boundary correlation functions of the six and nineteen vertex models with domain wall boundary conditions”, Physica A, 390 (2011), 3337–3347 | DOI | MR
[30] F. Colomo, A. G. Pronko, “An approach for calculating correlation functions in the six-vertex model with domain wall boundary conditions”, Theor. Math. Phys., 171:2 (2012), 254–270 | DOI | MR | Zbl
[31] P. L. Ferrari, H. Spohn, “Domino tilings and the six-vertex model at its free fermion point”, J. Phys. A, 39 (2006), 10297–10306 | DOI | MR | Zbl
[32] C. Destri, H. J. de Vega, “Light-cone lattice approach to fermionic theories in 2D: The massive Thirring model”, Nucl. Phys. B, 290 (1987), 363–391 | DOI | MR
[33] Y. Umeno, M. Shiroishi, M. Wadati, “Fermionic $R$-operator for the fermion chain model”, J. Phys. Soc. Japan, 67:6 (1998), 1930–1935 | DOI | MR | Zbl
[34] F. Göhmann, V. E. Korepin, “Solution of the quantum inverse problem”, J. Phys. A, 33 (2000), 1199–1220 | DOI | MR | Zbl
[35] F. A. Berezin, The method of second quantization, Pure and applied physics. A series of monographs and textbooks, Academic Press, New York, 1966 | MR | Zbl
[36] F. A. Berezin, Introduction to Superanalysis, Mathematical Physics and Applied Mathematics, D. Reidel Publishing Co., Dordrecht, 1987 | MR | Zbl
[37] K. E. Cahill, R. J. Glauber, “Density operators for fermions”, Phys. Rev. A, 59 (1999), 1539–1555 | DOI
[38] M. Combescure, D. Robert, “Fermionic coherent states”, J. Phys. A, 45 (2012), 244005 | DOI | MR | Zbl
[39] V. S. Kapitonov, A. G. Pronko, “The five-vertex model and boxed plane partitions”, J. Math. Sci. (N.Y.), 158 (2009), 858–867 | DOI | MR | Zbl
[40] V. S. Kapitonov, A. G. Pronko, “Weighted enumerations of boxed plane partitions and the inhomogeneous five-vertex model”, J. Math. Sci. (N. Y.), 192 (2013), 70–80 | DOI | MR | Zbl
[41] M. V. Fedoryuk, The Saddle-Point Method, Nauka, M., 1977 (in Russian) | MR | Zbl
[42] F. W. J. Olver, Asymptotics and Special Functions, A. K. Peters Ltd., Wellesley, MA, 1974 | MR
[43] A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integrals and series, v. 3, More special functions, Gordon and Breach Science Publishers, New York, NY, 1990 | MR | Zbl
[44] C. A. Tracy, H. Widom, “Level spacing distributions and the Airy kernel”, Commun. Math. Phys., 159 (1994), 151–174 | DOI | MR | Zbl
[45] M. L. Mehta, Random Matrices, 3rd. ed., Elsevier, Amsterdam, 2004 | MR | Zbl
[46] K. Johansson, “The arctic circle boundary and the Airy process”, Ann. Probab., 33 (2005), 1–30 | DOI | MR | Zbl
[47] A. Yu. Okounkov, N. Yu. Reshetikhin, “The birth of a random matrix”, Mosc. Math. J., 6:3 (2006), 553–566 | DOI | MR | Zbl
[48] K. Johansson, E. Nordenstam, “Eigenvalues of GUE minors”, Electron. J. Probab., 11 (2006), 1342–1371 | DOI | MR | Zbl
[49] F. Colomo, A. G. Pronko, “Third-order phase transition in random tilings”, Phys. Rev. E, 88 (2013), 042125 | DOI