@article{ZNSL_2020_494_a7,
author = {S. E. Derkachev and A. V. Ivanov and L. A. Shumilov},
title = {Mellin{\textendash}Barnes transformation for two-loop master-diagrams},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {144--167},
year = {2020},
volume = {494},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a7/}
}
S. E. Derkachev; A. V. Ivanov; L. A. Shumilov. Mellin–Barnes transformation for two-loop master-diagrams. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 144-167. http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a7/
[1] L. D. Faddeev, “How algebraic Bethe ansatz works for integable model”, Quantum symmetries/Symmetries Quantiques, Proc. Les-Houches symmer school, LXIV, eds. A. Connes, K. Kawedzki, J. Zinn-Justin, North Holland, 1998, 149–211 | MR
[2] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Lect. Notes Phys., 151, 1982, 61 | DOI | MR | Zbl
[3] E. K. Sklyanin, “Quantum inverse scattering method. Selected topics”, Quantum Group and Quantum Integrable Systems, Nankai Lectures on Mathematical Physics (Nankai Institute of Mathematics, China, 2-18 April 1991), World Scientific, 1992, 63–97, arXiv: hep-th/9211111 | MR
[4] E. K. Sklyanin, “The quantum Toda chain”, Lect. Notes in Phys., 226, 1985, 196–233 | DOI | MR | Zbl
[5] E. K. Sklyanin, “Separation of variables – new trends”, Prog. Theor. Phys. Suppl., 118 (1995), 35 | DOI | MR | Zbl
[6] S. Kharchev, D. Lebedev, “Eigenfunctions of GL(N, R) Toda chain: The Mellin-Barnes representation”, Pis'ma v ZhETF, 71 (2000), 338–343
[7] A. Gerasimov, S. Kharchev, D. Lebedev, “Representation theory and quantum inverse scattering method: the open Toda chain and the hyperbolic Sutherland model”, IMRN, 17 (2004), 823–854 | DOI | MR | Zbl
[8] L. N. Lipatov, “High-energy asymptotics of multicolor QCD and two-dimensional conformal field theories”, Phys. Lett., B 309 (1993), 394–396 | DOI
[9] JETP Lett., 59 (1994), 596–599
[10] L. D. Faddeev, G. P. Korchemsky, “High-energy QCD as a completely integrable model”, Phys. Lett., B 342 (1995), 311–322 | DOI
[11] S. E. Derkachov, G. P. Korchemsky, A. N. Manashov, “Noncompact Heisenberg spin magnets from high-energy QCD: 1. Baxter Q operator and separation of variables”, Nucl. Phys., B 617 (2001), 375 | DOI | MR | Zbl
[12] O. Gurdogan, V. Kazakov, “New Integrable 4D Quantum Field Theories from Strongly Deformed Planar N = 4 Supersymmetric Yang-Mills Theory”, Phys. Rev. Lett., 117 (2016), 201602, arXiv: 1512.06704 | DOI | MR
[13] V. Kazakov, E. Olivucci, “Bi-scalar integrable CFT at any dimension”, Phys.Rev.Lett., 121 (2018), 131601, 13, arXiv: 1801.09844 | DOI | MR
[14] B. Basso, L. J. Dixon, “Gluing Ladder Feynman Diagrams into Fishnets”, Phys. Rev. Lett., 119 (2017), 071601, arXiv: 1705.03545 | DOI | MR
[15] S. Derkachov, V. Kazakov, E. Olivucci, “Basso-Dixon Correlators in Two-Dimensional Fishnet CFT”, J. High Energy Physics, 2019 | MR
[16] S. Derkachov, E. Olivucci, Exactly solvable single-trace four point correlators in $\chi CFT_4$, arXiv: 2007.15049
[17] B. Basso, G. Ferrando, V. Kazakov, D. Zhong, “Thermodynamic Bethe Ansatz for Fishnet CFT”, Phys. Rev. Lett., 125 (2020), 091601, 9, arXiv: 1911.10213 | DOI
[18] S. E. Derkachov, A. N. Manashov, P. A. Valinevich, “SL(2, C) Gustafson integrals”, SIGMA, 14 (2018), 030, arXiv: 1711.07822 | MR | Zbl
[19] R. S. Ismagilov, “On Racah operators”, Funct. Anal. Appl., 40 (2006), 222–224 | DOI | MR | Zbl
[20] R. S. Ismagilov, “Racah operators for principal series of representations of the group SL(2, C)”, Sb. Math., 198 (2007), 369–381 | DOI | MR | Zbl
[21] S. E. Derkachov, V. P. Spiridonov, “The 6j-symbols for the SL(2, C) group”, Theoret. and Math. Phys., 198 (2019), 29–47, arXiv: 1711.07073 | DOI | MR | Zbl
[22] Y. A. Neretin, “An analog of the Dougall formula and of the de Branges-Wilson integral”, Ramanujan J. (to appear) , arXiv: 1812.07341
[23] Y. A. Neretin, “Barnes-Ismagilov integrals and hypergeometric functions of the complex field”, SIGMA, 16 (2020), 072, arXiv: 1910.10686 | MR
[24] V. F. Molchanov, Yu. A. Neretin, “A pair of commuting hypergeometric operators on the complex plane and bispectrality”, J. Spectr. Theory (to appear) , arXiv: 1812.06766
[25] V. S. Dotsenko, V. A. Fateev, “Four-point correlation functions and the operator algebra in 2D conformal invariant theories with central charge C = 1”, Nuclear Phys., B 251 (1985), 691–734 | DOI | MR
[26] V. A. Fateev, A. V. Litvinov, “Multipoint correlation functions in Liouville field theory and minimal Liouville gravity”, Theoret. and Math. Phys., 154 (2008), 454–472, arXiv: 0707.1664 | DOI | MR | Zbl
[27] N. Usyukina, A. I. Davydychev, “Exact results for three and four point ladder diagrams with an arbitrary number of rungs”, Phys. Lett., B 305 (1993), 136 | DOI | MR
[28] D. J. Broadhurst, “Summation of an infinite series of ladder diagrams”, Phys. Lett., B 307 (1993), 132 | DOI | MR
[29] A. P. Isaev, “Multi-loop Feynman integrals and conformal quantum mechanics”, Nucl. Phys., B 662 (2003), 461, arXiv: ; A. P. Isaev, “Operator approach to analytical evaluation of Feynman diagrams”, Phys. Atom. Nucl., 71 (2008), 914–924, arXiv: hep-th/03030560709.0419 | DOI | MR | Zbl | DOI
[30] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kritichesskogo povedeniya i stokhasticheskoi dinamike, Izd. PIYaF, Sankt-Peterburg, 1998, 774 pp.
[31] Teor. Mat. Fiz., 47 (1981), 291 | DOI
[32] A. G. Grozin, “Massless two-loop self-energy diagram: Historical review”, Int. J. Mod. Phys., A 27 (2012), arXiv: 1206.2572 | MR | Zbl
[33] I. Bierenbaum, S. Weinzierl, “The Massless two loop two point function”, Eur. Phys. J., C 32 (2003), 67, arXiv: hep-ph/0308311 | DOI
[34] D. J. Broadhurst, A. V. Kotikov, “Compact analytical form for nonzeta terms in critical exponents at order $1/N^3$”, Phys. Lett., B 441 (1998), 345, arXiv: hep-th/9612013 | DOI | MR
[35] K. G. Chetyrkin, A. L. Kataev, F. V. Tkachov, “New Approach to Evaluation of Multiloop Feynman Integrals: The Gegenbauer Polynomial x Space Technique”, Nucl. Phys., B 174 (1980), 345 | DOI | MR
[36] A. V. Kotikov, “The Gegenbauer polynomial technique: The Evaluation of a class of Feynman diagrams”, Phys. Lett., B 375 (1996), 240, arXiv: hep-ph/9512270 | DOI | MR | Zbl
[37] A. V. Kotikov, S. Teber, “Multi-loop techniques for massless Feynman diagram calculations”, Phys. Part. Nucl., 50 (2019), 1, 41 pp., arXiv: 1805.05109 | DOI
[38] Oliver Schnetz, “Quantum periods: A Census of $\phi^4$-transcendentals”, Commun. Num. Theor. Phys., 4 (2010), 1–48, arXiv: 0801.2856 | DOI | MR