Mellin--Barnes representation for $SL(2, \mathbb{C})$ magnet
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 125-143

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $SL(2, \mathbb{C})$ spin magnet and construct eigenfunctions for the element $A(u)$ of the monodromy matrix. We use recursive procedure which gives representations of these functions in the form of Mellin-Barnes type integrals. We compare these functions to those constructed earlier by S. Derkachov and A. Manashov (Gauss–Givental representation) and prove that they coincide up to normalization factor.
@article{ZNSL_2020_494_a6,
     author = {P. A. Valinevich},
     title = {Mellin--Barnes representation for $SL(2, \mathbb{C})$ magnet},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {125--143},
     publisher = {mathdoc},
     volume = {494},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a6/}
}
TY  - JOUR
AU  - P. A. Valinevich
TI  - Mellin--Barnes representation for $SL(2, \mathbb{C})$ magnet
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 125
EP  - 143
VL  - 494
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a6/
LA  - ru
ID  - ZNSL_2020_494_a6
ER  - 
%0 Journal Article
%A P. A. Valinevich
%T Mellin--Barnes representation for $SL(2, \mathbb{C})$ magnet
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 125-143
%V 494
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a6/
%G ru
%F ZNSL_2020_494_a6
P. A. Valinevich. Mellin--Barnes representation for $SL(2, \mathbb{C})$ magnet. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 125-143. http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a6/