Mellin–Barnes representation for $SL(2, \mathbb{C})$ magnet
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 125-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider $SL(2, \mathbb{C})$ spin magnet and construct eigenfunctions for the element $A(u)$ of the monodromy matrix. We use recursive procedure which gives representations of these functions in the form of Mellin-Barnes type integrals. We compare these functions to those constructed earlier by S. Derkachov and A. Manashov (Gauss–Givental representation) and prove that they coincide up to normalization factor.
@article{ZNSL_2020_494_a6,
     author = {P. A. Valinevich},
     title = {Mellin{\textendash}Barnes representation for $SL(2, \mathbb{C})$ magnet},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {125--143},
     year = {2020},
     volume = {494},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a6/}
}
TY  - JOUR
AU  - P. A. Valinevich
TI  - Mellin–Barnes representation for $SL(2, \mathbb{C})$ magnet
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 125
EP  - 143
VL  - 494
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a6/
LA  - ru
ID  - ZNSL_2020_494_a6
ER  - 
%0 Journal Article
%A P. A. Valinevich
%T Mellin–Barnes representation for $SL(2, \mathbb{C})$ magnet
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 125-143
%V 494
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a6/
%G ru
%F ZNSL_2020_494_a6
P. A. Valinevich. Mellin–Barnes representation for $SL(2, \mathbb{C})$ magnet. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 125-143. http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a6/

[1] S. E. Derkachov, G. P. Korchemsky, A. N. Manashov, “Noncompact Heisenberg spin magnets from high-energy QCD: 1. Baxter $Q$ operator and separation of variables”, Nucl. Phys., B 617 (2001), 375 | DOI | MR | Zbl

[2] S. E. Derkachov, G. P. Korchemsky, J. Kotanski, A. N. Manashov, “Noncompact Heisenberg spin magnets from high-energy QCD. 2. Quantization conditions and energy spectrum”, Nucl. Phys., B 645 (2002), 237 | DOI | MR | Zbl

[3] A. G. Bytsko, J. Teschner, “Quantization of models with non-compact quantum group symmetry: Modular $XXZ$ magnet and lattice sinh-Gordon model”, J. Phys., A 39 (1292), 12927 | MR

[4] H. J. De Vega, L. N. Lipatov, “Interaction of reggeized gluons in the Baxter-Sklyanin representation”, Phys. Rev., D 64 (1140), 114019

[5] S. E. Derkachov, A. N. Manashov, “Iterative construction of eigenfunctions of the monodromy matrix for $SL(2, \mathbb{C})$ magnet”, J. Phys., A47 (2014), 305204 | MR | Zbl

[6] S. Kharchev, D. Lebedev, “Integral representation for the eigenfunctions of quantum open and periodic Toda chainf from QISM formalism”, J. Phys., A34 (2001), 2247–2258 | MR | Zbl

[7] S. Kharchev, D. Lebedev, “Eigenfunctions of $GL(N, \mathbb{R})$ Toda chain: The Mellin-Barnes representation”, JETP Lett., 71 (2000), 235–238 | DOI

[8] I. M. Gel'fand, M. A. Naimark, “Unitary reprsentations of classical group”, Trudy Mat. Inst. Steklov, 36, Acad. Sci. USSR, M.–L., 1950, 3–288 | MR

[9] L. D. Faddeev, “How algebraic Bethe ansatz works for integable model”, Quantum symmetries/Symmetries Quantiques, Proc. Les-Houches symmer school, LXIV, eds. A. Connes, K. Kawedzki, J. Zinn-Justin, North Holland, 1998, 149–211 | MR

[10] E. K. Sklyanin, “Quantum Inverse Scattering Method.Selected Topics”, Quantum Group and Quantum Integrable Systems, Nankai Lectures in Mathematical Physics, ed. Mo-Lin Ge, World Scientific, Singapore, 1992, 63–97, arXiv: hep-th/9211111 | MR

[11] L. N. Lipatov, “Small $x$ physics in perturbative QCD”, Phys. Rept., 286 (1997), 131 | DOI

[12] L. N. Lipatov, “Integrability of scattering amplitudes in N=4 SUSY”, J. Phys., A 42 (2009), 304020 | MR | Zbl

[13] S. E. Derkachov, A. N. Manashov, “Factorization of $R$-matrix and Baxter $Q$-operators for generic $sl(N)$ spin chains”, J. Phys., A42 (2009), 075204, arXiv: 0809.2050 | MR | Zbl

[14] Y. A. Neretin, “Barnes-Ismagilov Integrals and Hypergeometric Functions of the Complex Field”, SIGMA, 16 (2020), 072 | MR

[15] I. M. Gel'fand, M. I. Graev, V. S. Retakh, “Hypergeometric functions over an arbitrary field”, Russian Math. Surveys, 59 (2004), 831–905 | DOI | MR | Zbl