Mellin--Barnes representation for $SL(2, \mathbb{C})$ magnet
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 125-143
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider $SL(2, \mathbb{C})$ spin magnet and construct eigenfunctions for the element $A(u)$ of the monodromy matrix. We use recursive procedure which gives representations of these functions in the form of Mellin-Barnes type integrals. We compare these functions to those constructed earlier by S. Derkachov and A. Manashov (Gauss–Givental representation) and prove that they coincide up to normalization factor.
@article{ZNSL_2020_494_a6,
author = {P. A. Valinevich},
title = {Mellin--Barnes representation for $SL(2, \mathbb{C})$ magnet},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {125--143},
publisher = {mathdoc},
volume = {494},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a6/}
}
P. A. Valinevich. Mellin--Barnes representation for $SL(2, \mathbb{C})$ magnet. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 125-143. http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a6/