@article{ZNSL_2020_494_a6,
author = {P. A. Valinevich},
title = {Mellin{\textendash}Barnes representation for $SL(2, \mathbb{C})$ magnet},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {125--143},
year = {2020},
volume = {494},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a6/}
}
P. A. Valinevich. Mellin–Barnes representation for $SL(2, \mathbb{C})$ magnet. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 125-143. http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a6/
[1] S. E. Derkachov, G. P. Korchemsky, A. N. Manashov, “Noncompact Heisenberg spin magnets from high-energy QCD: 1. Baxter $Q$ operator and separation of variables”, Nucl. Phys., B 617 (2001), 375 | DOI | MR | Zbl
[2] S. E. Derkachov, G. P. Korchemsky, J. Kotanski, A. N. Manashov, “Noncompact Heisenberg spin magnets from high-energy QCD. 2. Quantization conditions and energy spectrum”, Nucl. Phys., B 645 (2002), 237 | DOI | MR | Zbl
[3] A. G. Bytsko, J. Teschner, “Quantization of models with non-compact quantum group symmetry: Modular $XXZ$ magnet and lattice sinh-Gordon model”, J. Phys., A 39 (1292), 12927 | MR
[4] H. J. De Vega, L. N. Lipatov, “Interaction of reggeized gluons in the Baxter-Sklyanin representation”, Phys. Rev., D 64 (1140), 114019
[5] S. E. Derkachov, A. N. Manashov, “Iterative construction of eigenfunctions of the monodromy matrix for $SL(2, \mathbb{C})$ magnet”, J. Phys., A47 (2014), 305204 | MR | Zbl
[6] S. Kharchev, D. Lebedev, “Integral representation for the eigenfunctions of quantum open and periodic Toda chainf from QISM formalism”, J. Phys., A34 (2001), 2247–2258 | MR | Zbl
[7] S. Kharchev, D. Lebedev, “Eigenfunctions of $GL(N, \mathbb{R})$ Toda chain: The Mellin-Barnes representation”, JETP Lett., 71 (2000), 235–238 | DOI
[8] I. M. Gel'fand, M. A. Naimark, “Unitary reprsentations of classical group”, Trudy Mat. Inst. Steklov, 36, Acad. Sci. USSR, M.–L., 1950, 3–288 | MR
[9] L. D. Faddeev, “How algebraic Bethe ansatz works for integable model”, Quantum symmetries/Symmetries Quantiques, Proc. Les-Houches symmer school, LXIV, eds. A. Connes, K. Kawedzki, J. Zinn-Justin, North Holland, 1998, 149–211 | MR
[10] E. K. Sklyanin, “Quantum Inverse Scattering Method.Selected Topics”, Quantum Group and Quantum Integrable Systems, Nankai Lectures in Mathematical Physics, ed. Mo-Lin Ge, World Scientific, Singapore, 1992, 63–97, arXiv: hep-th/9211111 | MR
[11] L. N. Lipatov, “Small $x$ physics in perturbative QCD”, Phys. Rept., 286 (1997), 131 | DOI
[12] L. N. Lipatov, “Integrability of scattering amplitudes in N=4 SUSY”, J. Phys., A 42 (2009), 304020 | MR | Zbl
[13] S. E. Derkachov, A. N. Manashov, “Factorization of $R$-matrix and Baxter $Q$-operators for generic $sl(N)$ spin chains”, J. Phys., A42 (2009), 075204, arXiv: 0809.2050 | MR | Zbl
[14] Y. A. Neretin, “Barnes-Ismagilov Integrals and Hypergeometric Functions of the Complex Field”, SIGMA, 16 (2020), 072 | MR
[15] I. M. Gel'fand, M. I. Graev, V. S. Retakh, “Hypergeometric functions over an arbitrary field”, Russian Math. Surveys, 59 (2004), 831–905 | DOI | MR | Zbl