Quantum Hamiltonians generated by the $\mathrm{R}$-matrix of the five-vertex model
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 103-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider solutions of the RLL-relation with the $\mathrm{R}$-matrix related to the five-vertex model. We show that in the case where the quantum space of the $L$-operator is infinite-dimensional and described the Fock space of quantum oscillator, the solution of the RLL-relation gives the phase model with two external fields. In the case of a two-dimensional quantum space, there exist two solutions each corresponding to the five-vertex model, and their special case, corresponding to the four-vertex model. We also derive explicit expressions for quantum Hamiltonians for inhomogeneous in the external fields systems, both in the finite-dimensional and infinite-dimensional cases.
@article{ZNSL_2020_494_a5,
     author = {I. N. Burenev and A. G. Pronko},
     title = {Quantum {Hamiltonians} generated by the $\mathrm{R}$-matrix of the five-vertex model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {103--124},
     year = {2020},
     volume = {494},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a5/}
}
TY  - JOUR
AU  - I. N. Burenev
AU  - A. G. Pronko
TI  - Quantum Hamiltonians generated by the $\mathrm{R}$-matrix of the five-vertex model
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 103
EP  - 124
VL  - 494
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a5/
LA  - ru
ID  - ZNSL_2020_494_a5
ER  - 
%0 Journal Article
%A I. N. Burenev
%A A. G. Pronko
%T Quantum Hamiltonians generated by the $\mathrm{R}$-matrix of the five-vertex model
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 103-124
%V 494
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a5/
%G ru
%F ZNSL_2020_494_a5
I. N. Burenev; A. G. Pronko. Quantum Hamiltonians generated by the $\mathrm{R}$-matrix of the five-vertex model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 103-124. http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a5/

[1] L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi i $XYZ$ model Geizenberga”, UMN, 34:5 (1979), 13–63 | MR

[2] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[3] M. Gulácsi, H. van Beijeren, A. C. Levi, “Phase diagram of the five-vertex model”, Phys. Rev. E, 47 (1993), 2473–2483 | DOI

[4] H. Y. Huang, F. Y. Wu, H. Kunz, D. Kim, “Interacting dimers on the honeycomb lattice: an exact solution of the five-vertex model”, Physica A, 228 (1996), 1–32 | DOI | MR

[5] N. M. Bogoliubov, T. Nasar, “On the spectrum of the non-Hermitian phase-difference model”, Phys. Lett. A, 234 (1997), 345–350 | DOI | MR | Zbl

[6] N. M. Bogoliubov, R. K. Bullough, G. D. Pang, “Exact solution of a q-boson hopping model”, Phys. Rev. B, 47 (1993), 11945–11498 | DOI | MR

[7] N. M. Bogoliubov, A. G. Izergin, N. A. Kitanine, A. G. Pronko, J. Timonen, “Quantum dynamics of strongly interacting boson systems: atomic beam splitters and coupled Bose-Einstein condensates”, Phys. Rev. Lett., 86 (2001), 4439–4442 | DOI

[8] N. M. Bogoliubov, “Boxed plane partitions as an exactly solvable boson model”, J. Phys. A, 38 (2005), 9415–9430 | DOI | MR | Zbl

[9] N. M. Bogolyubov, K. L. Malyshev, “Integriruemye modeli i kombinatorika”, UMN, 70:5(425) (2015), 3–74 | MR

[10] C. Garrod, “Stochastic models of crystal growth in two dimensions”, Phys. Rev. A, 41 (1990), 4184–4194 | DOI

[11] C. Garrod, A. C. Levi, M. Touzani, “Mapping of crystal growth onto the 6-vertex model”, Solid State Comm., 75 (1990), 375–382 | DOI

[12] L.-H. Gwa, H. Spohn, “Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian”, Phys. Rev. Lett., 68 (1992), 725–728 | DOI | MR | Zbl

[13] K. Motegi K. Sakai, “Vertex models, TASEP and Grothendieck polynomials”, J. Phys. A, 46 (2013), 355201 | DOI | MR | Zbl

[14] N. M. Bogolyubov, “Pyativershinnaya model s fiksirovannymi granichnymi usloviyami”, Algebra i analiz, 21:3 (2009), 58–78

[15] N. M. Bogolyubov, “Chetyrekhvershinnaya model i sluchainye ukladki”, TMF, 155:1 (2008), 25–38 | MR

[16] V. S. Kapitonov, A. G. Pronko, “Pyativershinnaya model i ploskie razbieniya v yaschike”, Zap. nauchn. semin. POMI, 360, 2008, 162–179

[17] V. S. Kapitonov, A. G. Pronko, “Vzveshennye perechisleniya ploskikh razbienii v yaschike i neodnorodnaya pyativershinnaya model”, Zap. nauchn. semin. POMI, 398, 2012, 125–144

[18] A. G. Pronko, “Pyativershinnaya model i perechisleniya ploskikh razbienii”, Zap. nauchn. sem. POMI, 433 (2015), 204–223

[19] I. N. Burenev, A. G. Pronko, Determinant formulas for the five-vertex model, 2011, arXiv: 2011.01972

[20] O. Golinelli, K. Mallick, “The asymmetric simple exclusion process: An integrable model for non-equilibrium statistical mechanics”, J. Phys. A, 39 (2006), 12679–12705 | DOI | MR | Zbl

[21] N. M. Bogolyubov, “Chetyrekhvershinnaya model”, Zap. nauchn. sem. POMI, 347, 2007, 34–55

[22] F. Alcaraz, R. Bariev, “An Exactly Solvable Constrained XXZ Chain”, Stat. Phys. on the Eve of the 21st Century, Adv. Statist. Mech., 14, 1999, arXiv: cond-mat/9904042 | MR

[23] N. I. Abarenkova, A. G. Pronko, “Temperaturnyi korrelyator v absolyutno anizotropnom XXZ-magnetike Geizenberga”, TMF, 131:2 (2002), 288–303 | MR | Zbl

[24] N. I. Abarenkova, A. G. Pronko, “Temperaturnye korrelyatory XXZ-magnetika Geizenberga pri $\Delta = -\infty$”, Zap. nauchn. semin. POMI, 269, 2000, 43–61 | Zbl

[25] R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press, San Diego, CA, 1982 | MR | Zbl

[26] B. Brubaker, D. Bump, S. Friedberg, “Schur Polynomials and The Yang-Baxter Equation”, Commun. Math. Phys., 308 (2011), 281–301 | DOI | MR | Zbl