@article{ZNSL_2020_494_a4,
author = {V. V. Borzov and E. V. Damaskinskiy},
title = {Realization by a differential operator of the annihilation operator for generalized {Chebyshev} oscillator},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {75--102},
year = {2020},
volume = {494},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a4/}
}
TY - JOUR AU - V. V. Borzov AU - E. V. Damaskinskiy TI - Realization by a differential operator of the annihilation operator for generalized Chebyshev oscillator JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 75 EP - 102 VL - 494 UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a4/ LA - ru ID - ZNSL_2020_494_a4 ER -
%0 Journal Article %A V. V. Borzov %A E. V. Damaskinskiy %T Realization by a differential operator of the annihilation operator for generalized Chebyshev oscillator %J Zapiski Nauchnykh Seminarov POMI %D 2020 %P 75-102 %V 494 %U http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a4/ %G ru %F ZNSL_2020_494_a4
V. V. Borzov; E. V. Damaskinskiy. Realization by a differential operator of the annihilation operator for generalized Chebyshev oscillator. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 75-102. http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a4/
[1] V. V. Borzov, E. V. Damaskinskii, “Lokalnoe vozmuschenie diskretnogo uravneniya Shredingera i obobschennyi ostsillyator Chebysheva”, TMF, 200:3 (2019), 494–506 | MR | Zbl
[2] V. V. Borzov, E. V. Damaskinsky, “Generalized Chebychev polynomials conected with a point interaction for the discrete Schrödinger equation”, Proc. International Conference DAYS on DIFFRACTION'2018, 2018 | Zbl
[3] V. V. Borzov, E. V. Damaskinsky, “Realization of the annihilation operator for an oscillator-like system by a differential operator and Hermite-Chihara polynomials”, Integral Transforms Special Functions, 13 (2002), 547–554 | DOI | MR | Zbl
[4] V. V. Borzov, “Orthogonal polynomials and generalized oscillator algebras”, Integral Transforms and Special Functions, 12 (2001), 115–138 | DOI | MR | Zbl
[5] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, NY, 1978 | MR | Zbl
[6] V. V. Borzov, Generalized Hermite polynomials, Preprint SPBU-IP-00-24, arXiv: math.QA/0101216
[7] D. R. Yafaev, “A point interaction for the discrete Schrödinger operator and generalized Chebyshev polynomials”, J. Math. Phys., 58 (2017), 063511 | DOI | MR | Zbl
[8] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady - Elementarnye funktsii, Nauka, 1981 | MR
[9] Herbert S. Wilf, Generatingfunctionology, 3rd edition, A K Peters, Ltd., 2006 | MR | Zbl
[10] J. Koekoek, R. Koekoek, “On a differential equation for Kornwinder's generalized Laguerre polynomials”, Proc. Amer. Math. Soc., 4 (1991), 1045–1054 | MR | Zbl
[11] D. A. Cardon, E. L. Sorensen, J. C. White, Interlacing properties of coefficients polynomials in differential operator representations of real-root preserving linear transformation, arXiv: math/1912.13055
[12] A. M. Krall, Hilbert Space, Boundary Value Problems and Orthogonal Polynomials, Birkhauser, Basel, 2002 | MR | Zbl