Realization by a differential operator of the annihilation operator for generalized Chebyshev oscillator
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 75-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study a generalized Chebyshev oscillator [1] associated with a point interaction for the discrete Schrödinger operator. Our goal is to find a realization of the annihilation operator for this oscillator by a differential operator. This realization can be used to obtain a differential equation for the corresponding generalized Chebyshev polynomials [2]. This report is a continuation of our work [1, 3].
@article{ZNSL_2020_494_a4,
     author = {V. V. Borzov and E. V. Damaskinskiy},
     title = {Realization by a differential operator of the annihilation operator for generalized {Chebyshev} oscillator},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {75--102},
     year = {2020},
     volume = {494},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a4/}
}
TY  - JOUR
AU  - V. V. Borzov
AU  - E. V. Damaskinskiy
TI  - Realization by a differential operator of the annihilation operator for generalized Chebyshev oscillator
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 75
EP  - 102
VL  - 494
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a4/
LA  - ru
ID  - ZNSL_2020_494_a4
ER  - 
%0 Journal Article
%A V. V. Borzov
%A E. V. Damaskinskiy
%T Realization by a differential operator of the annihilation operator for generalized Chebyshev oscillator
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 75-102
%V 494
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a4/
%G ru
%F ZNSL_2020_494_a4
V. V. Borzov; E. V. Damaskinskiy. Realization by a differential operator of the annihilation operator for generalized Chebyshev oscillator. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 75-102. http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a4/

[1] V. V. Borzov, E. V. Damaskinskii, “Lokalnoe vozmuschenie diskretnogo uravneniya Shredingera i obobschennyi ostsillyator Chebysheva”, TMF, 200:3 (2019), 494–506 | MR | Zbl

[2] V. V. Borzov, E. V. Damaskinsky, “Generalized Chebychev polynomials conected with a point interaction for the discrete Schrödinger equation”, Proc. International Conference DAYS on DIFFRACTION'2018, 2018 | Zbl

[3] V. V. Borzov, E. V. Damaskinsky, “Realization of the annihilation operator for an oscillator-like system by a differential operator and Hermite-Chihara polynomials”, Integral Transforms Special Functions, 13 (2002), 547–554 | DOI | MR | Zbl

[4] V. V. Borzov, “Orthogonal polynomials and generalized oscillator algebras”, Integral Transforms and Special Functions, 12 (2001), 115–138 | DOI | MR | Zbl

[5] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, NY, 1978 | MR | Zbl

[6] V. V. Borzov, Generalized Hermite polynomials, Preprint SPBU-IP-00-24, arXiv: math.QA/0101216

[7] D. R. Yafaev, “A point interaction for the discrete Schrödinger operator and generalized Chebyshev polynomials”, J. Math. Phys., 58 (2017), 063511 | DOI | MR | Zbl

[8] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady - Elementarnye funktsii, Nauka, 1981 | MR

[9] Herbert S. Wilf, Generatingfunctionology, 3rd edition, A K Peters, Ltd., 2006 | MR | Zbl

[10] J. Koekoek, R. Koekoek, “On a differential equation for Kornwinder's generalized Laguerre polynomials”, Proc. Amer. Math. Soc., 4 (1991), 1045–1054 | MR | Zbl

[11] D. A. Cardon, E. L. Sorensen, J. C. White, Interlacing properties of coefficients polynomials in differential operator representations of real-root preserving linear transformation, arXiv: math/1912.13055

[12] A. M. Krall, Hilbert Space, Boundary Value Problems and Orthogonal Polynomials, Birkhauser, Basel, 2002 | MR | Zbl