Heisenberg $XX0$ chain and random walks on a ring
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 48-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We obtain and investigate mean values of the exponential of the centroid operator for the periodic Heisenberg $XX0$ chain on a ring. The generating function of directed lattice paths is obtained in terms of circulant matrices which leads to generalizations of the Ramus's identity. The two-time correlation function of the exponential of the centroid operator is expressed in terms of the Cauchy determinant and thus explicitly calculated.
@article{ZNSL_2020_494_a2,
     author = {N. M. Bogoliubov and C. L. Malyshev},
     title = {Heisenberg $XX0$ chain and random walks on a ring},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {48--63},
     year = {2020},
     volume = {494},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a2/}
}
TY  - JOUR
AU  - N. M. Bogoliubov
AU  - C. L. Malyshev
TI  - Heisenberg $XX0$ chain and random walks on a ring
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 48
EP  - 63
VL  - 494
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a2/
LA  - en
ID  - ZNSL_2020_494_a2
ER  - 
%0 Journal Article
%A N. M. Bogoliubov
%A C. L. Malyshev
%T Heisenberg $XX0$ chain and random walks on a ring
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 48-63
%V 494
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a2/
%G en
%F ZNSL_2020_494_a2
N. M. Bogoliubov; C. L. Malyshev. Heisenberg $XX0$ chain and random walks on a ring. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 48-63. http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a2/

[1] R. G. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, San Diego, 1982 | MR | Zbl

[2] L. D. Faddeev, “Quantum completely integrable models in field theory”, Mathematical physics reviews. Sect. C.: Mathematical physics, v. 1, Harwood Acad. Publ., Chur, 1980, 107–155 ; 40 Years in Mathematical Physics, World Sci. Ser. 20th Century Math., 2, World Scientific, Singapore, 1995, 187–235 | MR | DOI | MR

[3] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[4] P. Deift, “Integrable systems and combinatorial theory”, Notices Amer. Math. Soc., 47 (2000), 631 | MR | Zbl

[5] N. M. Bogoliubov, C. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70 (2015), 789 | DOI | MR | Zbl

[6] S. G. Mohanty, Lattice Path Counting and Applications, Academic Press, New York, 1979 | MR | Zbl

[7] T. V. Narayana, Lattice Path Combinatorics With Statistical Applications, Math. Expositions, 23, Univ. of Toronto Press, Toronto, 1979 | MR | Zbl

[8] C. Krattenthaler, “Lattice path enumeration”, Handbook of Enumerative Combinatorics, Discrete Math. Appl., ed. M. Bóna, CRC Press, Boca Raton–London–New York, 2015, 589–678 | MR | Zbl

[9] P. J. Davis, Circulant Matrices, Chelsea, 1994 | MR | Zbl

[10] J. Dobson, “A matrix variation on Ramus's identity for lacunary sums of binomial coefficients”, Int. J. of Math. and Comp. Sc., 12 (2017), 27 | MR | Zbl

[11] F. T. Howard, R. Witt, “Lacunary sums of binomial coefficients”, Applications of Fibonacci Numbers, 7, Springer, Dordrecht, 1998, 185–195 | DOI | MR

[12] C. Ramus, “Solution générale d'un probléme d'analyse combinatorie”, J. reine angew. Math., 11 (1834), 353–355 | MR | Zbl

[13] N. M. Bogoliubov, “$XXO$ Heisenberg chain and random walks”, J. Math. Sci., 138 (2006), 5636 | DOI | MR

[14] N. M. Bogoliubov, “Enumerative combinatorics of $XX0$ Heisenberg chain”, Zap. Nauchn. Semin. POMI, 487, 2019, 53

[15] N. M. Bogoliubov, C. Malyshev, “The phase model and the norm-trace generating function of plane partitions”, J. Stat. Mech., 2018, 083101 | DOI | MR | Zbl

[16] N. M. Bogoliubov, C. Malyshev, “The partition function of the four-vertex model in inhomogeneous external field and trace statistics”, J. Phys. A: Math. Theor., 52 (2019), 495002 | DOI | MR