Heisenberg $XX0$ chain and random walks on a ring
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 48-63
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain and investigate mean values of the exponential of the centroid operator for the periodic Heisenberg $XX0$ chain on a ring. The generating function of directed lattice paths is obtained in terms of circulant matrices which leads to generalizations of the Ramus's identity. The two-time correlation function of the exponential of the centroid operator is expressed in terms of the Cauchy determinant and thus explicitly calculated.
@article{ZNSL_2020_494_a2,
author = {N. M. Bogoliubov and C. L. Malyshev},
title = {Heisenberg $XX0$ chain and random walks on a ring},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {48--63},
publisher = {mathdoc},
volume = {494},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a2/}
}
N. M. Bogoliubov; C. L. Malyshev. Heisenberg $XX0$ chain and random walks on a ring. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 48-63. http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a2/