Mixed type regularizations and nonlogarithmic singularities
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 242-249 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we discuss dimensional and cutoff regularizations, using the heat kernel method as an example. The regularization modifications by adding to a Green function a special type operator are considered. In particular, we show that the dimensional regularization can lead to non-logarithmic divergences.
@article{ZNSL_2020_494_a11,
     author = {N. V. Kharuk},
     title = {Mixed type regularizations and nonlogarithmic singularities},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {242--249},
     year = {2020},
     volume = {494},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a11/}
}
TY  - JOUR
AU  - N. V. Kharuk
TI  - Mixed type regularizations and nonlogarithmic singularities
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 242
EP  - 249
VL  - 494
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a11/
LA  - ru
ID  - ZNSL_2020_494_a11
ER  - 
%0 Journal Article
%A N. V. Kharuk
%T Mixed type regularizations and nonlogarithmic singularities
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 242-249
%V 494
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a11/
%G ru
%F ZNSL_2020_494_a11
N. V. Kharuk. Mixed type regularizations and nonlogarithmic singularities. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 242-249. http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a11/

[1] J. C. Collins, Renormalization: an introduction to renormalization, the renormalization group and the operator-product expansion, Cambridge University Press, Cambridge, 1984 | MR | Zbl

[2] G. 't Hooft, M. Veltman, “Regularization and renormalization of gauge fields”, Nucl. Phys. B, 44 (1972), 189–213 | DOI | MR

[3] C. G. Bollini, J. J. Giambiaggi, “Lowest order “divergent” graphs in v-dimensional space”, Phys. Lett. B, 40 (1972), 566–568 | DOI

[4] J. Polchinski, “Renormalization and effective lagrangians”, Nuclear Physics B, 231:2 (1984), 269–295 | DOI

[5] A. V. Ivanov, N. V. Kharuk, “Quantum equation of motion and two-loop cutoff renormalization for $\phi^3$ model”, Zap. Nauchn. Sem. POMI, 487, 2019, 151–166

[6] R. P. Feynman, “Space-time approach to quantum electrodynamics”, Physical Review, 76 (1949), 769 | DOI | MR | Zbl

[7] B. S. DeWitt, Dynamical Theory of Groups and Fields, Gordon and Breach, New York, 1965 | MR

[8] P. B. Gilkey, “The spectral geometry of a Riemannian manifold”, J. Differ. Geom., 10 (1975), 601–618 | DOI | MR | Zbl

[9] A. V. Ivanov, N. V. Kharuk, Heat kernel: proper time method, Fock-Schwinger gauge, path integral representation, and Wilson line, 2019, arXiv: 1906.04019 [hep-th] | MR

[10] M. Lucher, “Dimensional regularisation in the presence of large background fields”, Annals of Physics, 142 (1982), 359–392 | DOI | MR

[11] A. V. Ivanov, N. V. Kharuk, “Two-loop Cutoff renormalization of $4$-D Yang–Mills effective action”, J. Phys. G: Nucl. Part. Phys., 2020 | DOI

[12] L. D. Faddeev, A. A. Slavnov, Gauge Fields: An Introduction to Quantum Theory, Frontiers in Physics, 83, Addison-Wesley, 1991 | MR

[13] K. Hagiwara, S. Ishihara, R. Szalapski, D. Zeppenfeld, “Low energy effects of new interactions in the electroweak boson sector”, Phys. Rev. D, 48:5 (1993), 2182–2203 | DOI