Approximation for the zeros of generalized Hermite polynomials via modulated elliptic function
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 228-241 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Distributiond of zeros of polynomials constitute a classic analytic problem. In the paper, a distribution of zeroes to generalized Hermite polynomials $H_{m,n}(z)$ is approximated as $m$, $n\to\infty$, $m/n=O(1)$. These polyno-\break mials defined as Wronskians of classic Hermite polynomials appear in a number of mathematical physics problems as well as in the theory of random matrices. The calcualation is based on scaling reduction of Painlevé IV equation which has solutions $u(z)= -2z +\partial_z \ln H_{m,n+1}(z)/H_{m+1,n}(z)$. For large $m, n$ the logarithmic derivative of $H_{m,n}$ satisfies equation for elliptic Weierstrass function with slowly varying coefficients. In this scaling limit the zeros coincide with poles of such modulated Weierstrass function, and a stability in linear limit gives estimates for the set od zeros.This construction is relatively simple and avoids bulky calculations by isomonodromic deformation method.
@article{ZNSL_2020_494_a10,
     author = {V. Yu. Novokshenov},
     title = {Approximation for the zeros of generalized {Hermite} polynomials via modulated elliptic function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {228--241},
     year = {2020},
     volume = {494},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a10/}
}
TY  - JOUR
AU  - V. Yu. Novokshenov
TI  - Approximation for the zeros of generalized Hermite polynomials via modulated elliptic function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 228
EP  - 241
VL  - 494
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a10/
LA  - ru
ID  - ZNSL_2020_494_a10
ER  - 
%0 Journal Article
%A V. Yu. Novokshenov
%T Approximation for the zeros of generalized Hermite polynomials via modulated elliptic function
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 228-241
%V 494
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a10/
%G ru
%F ZNSL_2020_494_a10
V. Yu. Novokshenov. Approximation for the zeros of generalized Hermite polynomials via modulated elliptic function. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 228-241. http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a10/

[1] G. Sege, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[2] M. Bertola, T. Bothner, “Zeros of large degree Vorob'ev-Yablonski polynomials via a Hankel determinant identity”, Int. Math. Research Notices, 19 (2015), 9330–9399 | DOI | MR | Zbl

[3] R. J. Buckingham, P. D. Miller, “Large-degree asymptotics of rational Painleve-II functions: noncritical behaviour”, Nonlinearity, 27 (2014), 2498–2578 | DOI | MR

[4] Y. Chen, M. V. Feigin, “Painlevé IV and degenerate Gaussian unitary ensembles”, J. Phys. A: Math. Gen., 39 (2006), 12381–12393 | DOI | MR | Zbl

[5] P. A. Clarkson, “The fourth Painlevé equation and associated special polynomials”, J. Math. Phys., 44 (2003), 5350–5374 | DOI | MR | Zbl

[6] P. A. Clarkson, “Special Polynomials Associated with Rational Solutions of the Painlevé Equations and Applications to Soliton Equations”, Comp. Methods and Function Theory, 6:2 (2006), 329–401 | DOI | MR | Zbl

[7] H. Guggenheimer, “On a note by Q. G. Mohammad”, Amer. Math. Monthly, 71 (1964), 54–55 | DOI | MR | Zbl

[8] P. Deift, Orthogonal polynomials and random matrices: A Riemann-Hilbert approach, Courant Lecture Notes, New York Univ., 1999 | MR

[9] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Comm. Pure Appl. Math., 52:11 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[10] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, “Strong asymptotics of orthogonal polynomials with respect to exponential weights”, Comm. Pure Appl. Math., 52:12 (1999), 1491–1552 | 3.0.CO;2-# class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[11] A. S. Fokas, A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, Painlevé Transcendents. The Riemann-Hilbert Approach, Math. Surveys and Monographs, 128, Amer. Math. Soc., Providence, RI, 2006 | DOI | MR

[12] A. A. Kapaev, Scaling limits in the fourth Painlevé transcendent, POMI Preprint 15/1996, May 1996 | MR

[13] A. P. Magnus, “Painleve-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials”, J. Comput. Appl. Math., 57 (1995), 215–237 | DOI | MR | Zbl

[14] D. Masoero, P. Roffelsen, “Poles of Painlevé IV rationals and their distribution”, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 14 (2018), 002 | MR | Zbl

[15] D. Masoero, P. Roffelsen, Roots of generalised Hermite polynomials when both parameters are large, arXiv: 1907.08552v1

[16] M. Noumi, Y. Yamada, “Symmetries in the fourth Painlevé equation and Okamoto polynomials”, Nagoya Math. J., 153 (1999), 53–86 | DOI | MR | Zbl

[17] M. Plancherel, W. Rotach, “Sur les valeurs asymptotiques des polynomes d'Hermite”, Commentarii Math. Helvetici, 1 (1929), 227–254 | DOI | MR | Zbl

[18] F. W. J. Olver, “Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders”, J. Research Nat. Bureau of Standards, Section B Math. and Math. Phys., 63B:2 (1959), 131–173 | DOI | MR

[19] A. I. Yablonskii, “On rational solutions of the second Painlevé equation”, Vesti Akad. Navuk. BSSR Ser. Fiz. Tekh. Nauk, 3 (1959), 30–35 | MR | MR