@article{ZNSL_2020_494_a10,
author = {V. Yu. Novokshenov},
title = {Approximation for the zeros of generalized {Hermite} polynomials via modulated elliptic function},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {228--241},
year = {2020},
volume = {494},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a10/}
}
TY - JOUR AU - V. Yu. Novokshenov TI - Approximation for the zeros of generalized Hermite polynomials via modulated elliptic function JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 228 EP - 241 VL - 494 UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a10/ LA - ru ID - ZNSL_2020_494_a10 ER -
V. Yu. Novokshenov. Approximation for the zeros of generalized Hermite polynomials via modulated elliptic function. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 228-241. http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a10/
[1] G. Sege, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962
[2] M. Bertola, T. Bothner, “Zeros of large degree Vorob'ev-Yablonski polynomials via a Hankel determinant identity”, Int. Math. Research Notices, 19 (2015), 9330–9399 | DOI | MR | Zbl
[3] R. J. Buckingham, P. D. Miller, “Large-degree asymptotics of rational Painleve-II functions: noncritical behaviour”, Nonlinearity, 27 (2014), 2498–2578 | DOI | MR
[4] Y. Chen, M. V. Feigin, “Painlevé IV and degenerate Gaussian unitary ensembles”, J. Phys. A: Math. Gen., 39 (2006), 12381–12393 | DOI | MR | Zbl
[5] P. A. Clarkson, “The fourth Painlevé equation and associated special polynomials”, J. Math. Phys., 44 (2003), 5350–5374 | DOI | MR | Zbl
[6] P. A. Clarkson, “Special Polynomials Associated with Rational Solutions of the Painlevé Equations and Applications to Soliton Equations”, Comp. Methods and Function Theory, 6:2 (2006), 329–401 | DOI | MR | Zbl
[7] H. Guggenheimer, “On a note by Q. G. Mohammad”, Amer. Math. Monthly, 71 (1964), 54–55 | DOI | MR | Zbl
[8] P. Deift, Orthogonal polynomials and random matrices: A Riemann-Hilbert approach, Courant Lecture Notes, New York Univ., 1999 | MR
[9] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Comm. Pure Appl. Math., 52:11 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[10] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, “Strong asymptotics of orthogonal polynomials with respect to exponential weights”, Comm. Pure Appl. Math., 52:12 (1999), 1491–1552 | 3.0.CO;2-# class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[11] A. S. Fokas, A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, Painlevé Transcendents. The Riemann-Hilbert Approach, Math. Surveys and Monographs, 128, Amer. Math. Soc., Providence, RI, 2006 | DOI | MR
[12] A. A. Kapaev, Scaling limits in the fourth Painlevé transcendent, POMI Preprint 15/1996, May 1996 | MR
[13] A. P. Magnus, “Painleve-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials”, J. Comput. Appl. Math., 57 (1995), 215–237 | DOI | MR | Zbl
[14] D. Masoero, P. Roffelsen, “Poles of Painlevé IV rationals and their distribution”, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 14 (2018), 002 | MR | Zbl
[15] D. Masoero, P. Roffelsen, Roots of generalised Hermite polynomials when both parameters are large, arXiv: 1907.08552v1
[16] M. Noumi, Y. Yamada, “Symmetries in the fourth Painlevé equation and Okamoto polynomials”, Nagoya Math. J., 153 (1999), 53–86 | DOI | MR | Zbl
[17] M. Plancherel, W. Rotach, “Sur les valeurs asymptotiques des polynomes d'Hermite”, Commentarii Math. Helvetici, 1 (1929), 227–254 | DOI | MR | Zbl
[18] F. W. J. Olver, “Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders”, J. Research Nat. Bureau of Standards, Section B Math. and Math. Phys., 63B:2 (1959), 131–173 | DOI | MR
[19] A. I. Yablonskii, “On rational solutions of the second Painlevé equation”, Vesti Akad. Navuk. BSSR Ser. Fiz. Tekh. Nauk, 3 (1959), 30–35 | MR | MR