Regular representation of the group $\mathrm{GL}(N,\mathbb{R})$: factorization, Casimir operators and Toda chain
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 23-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The note is devoted to a factorization formula for the matrix constructed from the generators of the group $\mathrm{GL}(N,\mathbb{R})$ in its regular representation. The factorization formula makes it possible to calculate these generators together with Casimir operators in the case of an arbitrary $N$, and it also clarifies a link between the group $\mathrm{GL}(N,\mathbb{R})$ and the quantum Toda chain.
@article{ZNSL_2020_494_a1,
     author = {N. M. Belousov and S. E. Derkachev},
     title = {Regular representation of the group $\mathrm{GL}(N,\mathbb{R})$: factorization, {Casimir} operators and {Toda} chain},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {23--47},
     year = {2020},
     volume = {494},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a1/}
}
TY  - JOUR
AU  - N. M. Belousov
AU  - S. E. Derkachev
TI  - Regular representation of the group $\mathrm{GL}(N,\mathbb{R})$: factorization, Casimir operators and Toda chain
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 23
EP  - 47
VL  - 494
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a1/
LA  - ru
ID  - ZNSL_2020_494_a1
ER  - 
%0 Journal Article
%A N. M. Belousov
%A S. E. Derkachev
%T Regular representation of the group $\mathrm{GL}(N,\mathbb{R})$: factorization, Casimir operators and Toda chain
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 23-47
%V 494
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a1/
%G ru
%F ZNSL_2020_494_a1
N. M. Belousov; S. E. Derkachev. Regular representation of the group $\mathrm{GL}(N,\mathbb{R})$: factorization, Casimir operators and Toda chain. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 23-47. http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a1/

[1] D. P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya, Nauka, M., 1970, 664 pp.

[2] M. Bander, C. Itzykson, “Group Theory and the Hydrogen Atom (I)”, Reviews of Modern Physics, 38:2 (1966), 330–345 | DOI | MR

[3] A. Molev, Yangians and classical Lie algebras, Mathematical Surveys and Monographs, 143, American Mathematical Society, 2007, 400 pp. | DOI | MR | Zbl

[4] A. P. Isaev, V. A. Rubakov, Theory of Groups and Symmetries: Finite Groups, Lie Groups, and Lie Algebras, World Scientific, 2018, 476 pp. | MR | Zbl

[5] I. M. Gelfand, M. I. Naimark, N. Ya. Vilenkin, Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Obobschennye funktsii, 5, Gosudarstvennoe izdatelstvo fiziko-matematicheskoi literatury, M., 1962, 656 pp.

[6] E. K. Sklyanin, “Baecklund transformations and Baxter's Q-operator”, Integrable systems: from classical to quantum, Lecture notes (Universite de Montreal, Jul 26 – Aug 6, 1999), arXiv: nlin/0009009 [nlin.SI]

[7] M. Semenov-Tian-Shansky, Quantum Toda Lattice: a Challenge for Representation Theory, arXiv: 1912.13268 [math.RT]

[8] A. N. Leznov, M. V. Saveliev, Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems, Progress in Mathematical Physics, 15, Birkhauser Basel, 1992, 292 pp. | MR | Zbl

[9] I. M. Gelfand, M. I. Naimark, “Unitarnye predstavleniya klassicheskikh grupp”, Trudy matematicheskogo instituta im V. I. Steklova, 36, 1950 | MR | Zbl

[10] S. E. Derkachev, A. N. Manashov, “Obschee reshenie uravneniya Yanga-Bakstera s gruppoi simmetrii $\mathrm{SL}(n,\mathbb{C})$”, Algebra i analiz, 21:4 (2009), 1–94 | MR

[11] M. V. Babich, S. E. Derkachev, “O ratsionalnoi simplekticheskoi parametrizatsii koprisoedinennoi orbity $\mathrm{\mathrm{GL}}(n,\mathbb{C})$: diagonalizuemyi sluchai”, Algebra i analiz, 22:3 (2010), 16–31