@article{ZNSL_2020_494_a0,
author = {N. M. Belousov},
title = {Backlund transformation for the nonlinear {Schrodinger} equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--22},
year = {2020},
volume = {494},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a0/}
}
N. M. Belousov. Backlund transformation for the nonlinear Schrodinger equation. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 27, Tome 494 (2020), pp. 5-22. http://geodesic.mathdoc.fr/item/ZNSL_2020_494_a0/
[1] B. G. Konopelchenko, “The group structure of Backlund transformations”, Phys. Lett. A, 74 (1979), 189–192 | DOI | MR
[2] R. Sasaki, “Canonical structure of Backlund transformations”, Phys. Lett. A, 78 (1980), 7–10 | DOI | MR
[3] B. G. Konopelchenko, “Elementary Backlund transformations, nonlinear superposition principle and solution of the integrable equations”, Phys. Lett. A, 87 (1982), 445–448 | DOI | MR
[4] V. B. Kuznetsov, E. K. Sklyanin, “On Backlund transformations for many-body systems”, J. Physics A, 31 (1998), 2241–2251, arXiv: solv-int/9711010 | DOI | MR | Zbl
[5] E. K. Sklyanin, “Backlund transformations and Baxter's Q-operator”, Integrable systems: from classical to quantum, Lecture notes (Universite de Montreal, Jul 26 – Aug 6 1999), arXiv: nlin/0009009 [nlin.SI] | MR
[6] A. G. Izergin, Introduction to the Bethe Ansatz Solvable Models, Lecture notes, Universit`a di Firenze, Dipartimento di Fisica, 1998–1999
[7] V. Fock, “On the canonical transformation in classical and quantum mechanics”, Acta Physica, 27 (1969), 219–224 | DOI | MR
[8] N. Belousov, S. Derkachov, “The $Q$-Operator for the Quantum NLS Model”, J. Math. Sci., 242 (2019), 608–627, arXiv: 1812.10043 [hep-th] | DOI | MR | Zbl
[9] E. K. Sklyanin, “Kvantovyi variant metoda obratnoi zadachi rasseyaniya”, Zap. nauchn. semin. LOMI, 95, 1980, 55–128 | Zbl
[10] F. A. Berezin, The method of second quantization, Pure Appl. Phys., 24, Academic Press, 1966, 228 pp. | MR | Zbl
[11] M. Gaudin, V. Pasquier, “The periodic Toda chain and a matrix generalization of the Bessel function's recursion relations”, J. Phys. A, 25 (1992), 5243–5252 | DOI | MR | Zbl