@article{ZNSL_2020_493_a9,
author = {E. A. Gorodnitskiy},
title = {Properties of the affine {Poincar\'e} wavelet transform},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {138--153},
year = {2020},
volume = {493},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a9/}
}
E. A. Gorodnitskiy. Properties of the affine Poincaré wavelet transform. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 138-153. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a9/
[1] M. M. Popov, “Novyi metod rascheta volnovykh polei v vysokochastotnom priblizhenii”, Mat. voprosy teorii rasprostraneniya voln. 11, Zap. nauchn. semin. LOMI, 104, 1981, 195–216 | Zbl
[2] V. M. Babich, V. V. Ulin, “Kompleksnyi prostranstvenno-vremennoi luchevoi metod i “kvazifotony””, Matem. voprosy teorii rasprostraneniya voln. 12, Zap. nauchn. semin. LOMI, 117, 1981, 5–12 | Zbl
[3] A. P. Kachalov, “Sistema koordinat pri opisanii “kvazifotona””, Matem. voprosy teorii rasprostraneniya voln. 14, Zap. nauchn. sem. LOMI, 140, 1984, 73–76 | MR | Zbl
[4] A. .N. Norris, “Complex point-source representation of real point sources and the Gaussian beam summation method”, J. Opt. Soc. Am. A, 3:12 (1986), 2005–2010 | DOI
[5] V. M. Babich, “Kvazifotony i prostranstvenno-vremennoi luchevoi metod”, Matem. voprosy teorii rasprostraneniya voln. 36, Zap. nauchn. semin. POMI, 342, 2007, 5–13
[6] M. .M. Popov, N. M. Semtchenok, P. M. Popov, A. .R. Verdel, “Depth migration by the Gaussian beam summation method”, Geophysics, 75:2 (2010), S81–S93 | DOI
[7] M. Leibovich, E. Heyman, “Beam Summation Theory for Waves in Fluctuating Media. Part I: The Beam Frame and the Beam-Domain Scattering Matrix”, IEEE Transactions on Antennas and Propagation, 65:10 (2017), 5431–5442 | DOI | MR | Zbl
[8] M. Leibovich, E. Heyman, “Beam Summation Theory for Waves in Fluctuating Media. Part II: Stochastic Field Representation”, IEEE Transactions on Antennas and Propagation, 65:10 (2017), 5443–5452 | DOI | MR | Zbl
[9] E. Gorodnitskiy, M. Perel, Yu Geng, R.-S. Wu, “Depth migration with Gaussian wave packets based on Poincaré wavelets”, Geophysical Journal International, 205:1 (2016), 314–331 | DOI
[10] M. V. Perel, “Integral representation of solutions of the wave equation based on Poincaré wavelets”, Proceedings of the International Conference Days on Diffraction (Saint-Petersburg 2009), 2009, 159–161 | MR
[11] E. Gorodnitskiy, M. V. Perel, “The Poincaré wavelet transform: implementation and interpretation”, Proceedings of the International Conference Days on Diffraction (Saint-Petersburg 2011), 2011, 72–77
[12] M. V. Perel, E. Gorodnitskiy, “Integral representations of solutions of the wave equation based on relativistic wavelets”, J. of Phys. A: Math. and Theor., 45:38 (2012) | DOI | MR | Zbl
[13] E. A. Gorodnitskii, M. V. Perel, “Obosnovanie osnovannoi na veivletakh integralnoi formuly dlya resheniya volnovogo uravneniya”, Matem. voprosy teorii rasprostraneniya voln. 47, Zap. nauchn. sem. POMI, 461, 2017, 107–123
[14] A.P. Kiselev, M.V. Perel, “Gaussovskie volnovye pakety”, Optika i Spektroskopiya, 86:3 (1999), 357–359
[15] A.P. Kiselev, M.V. Perel, “Highly localized solutions of the wave equation”, J. Mathematical Physics, 41:4 (2000), 1034–1955 | DOI | MR
[16] M. V. Perel, M. S. Sidorenko, “New physical wavelet 'Gaussian wave packet'”, J. Physics A: Mathematical and Theoretical, 40:13 (2007), 3441 | DOI | MR | Zbl
[17] M. V. Perel, M. S. Sidorenko, “Wavelet-based integral representation for solutions of the wave equation”, J. Phys. A: Math. and Theor., 42:37 (2009), 375211 | DOI | MR | Zbl
[18] S. T. Ali, J.-P. Antoine, J. P. Gazeau, Coherent States, Wavelets, and Their Generalizations, Springer-Verlag, New York, 1999 | MR
[19] J.-P. Antoine, R. Murenzi, P. Vandergheynst, S. T. Ali, Two-Dimensional Wavelets and their Relatives, Cambridge University Press, 2004 | MR | Zbl
[20] I. M. Gelfand, R. A. Minlos, Z. Ya. Shapiro, Predstavleniya gruppy vraschenii i gruppy Lorentsa, ikh primeneniya, Gosudarstvennoe izd-vo fiz.-mat. literatury, M., 1958, 368 pp.
[21] M. V. Fedoryuk, Metod perevala, izd. 2, Knizhnyi dom LIBROKOM, M., 2010