Properties of the affine Poincaré wavelet transform
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 138-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The affine Poincaré wavelet transform is the convolution of the analyzed function and the parameter-dependent function called a wavelet. The wavelet is constructed from a function called the mother wavelet by using Lorentz transformations, shift and scaling and depending on the parameters, characterizing these transformations. We provide uniform by parameters estimates for the affine Poincaré wavelet transforms in some classes of analyzed functions and mother wavelets. Among other things, an estimate of the transform for large shifts and an estimate for large rapidities is proved. Both estimates allow one to check vanishment of the transform at small scales. We provide an asymptotic calculation of the Poincare affine wavelet transform of the model functions.
@article{ZNSL_2020_493_a9,
     author = {E. A. Gorodnitskiy},
     title = {Properties of the affine {Poincar\'e} wavelet transform},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {138--153},
     year = {2020},
     volume = {493},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a9/}
}
TY  - JOUR
AU  - E. A. Gorodnitskiy
TI  - Properties of the affine Poincaré wavelet transform
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 138
EP  - 153
VL  - 493
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a9/
LA  - ru
ID  - ZNSL_2020_493_a9
ER  - 
%0 Journal Article
%A E. A. Gorodnitskiy
%T Properties of the affine Poincaré wavelet transform
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 138-153
%V 493
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a9/
%G ru
%F ZNSL_2020_493_a9
E. A. Gorodnitskiy. Properties of the affine Poincaré wavelet transform. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 138-153. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a9/

[1] M. M. Popov, “Novyi metod rascheta volnovykh polei v vysokochastotnom priblizhenii”, Mat. voprosy teorii rasprostraneniya voln. 11, Zap. nauchn. semin. LOMI, 104, 1981, 195–216 | Zbl

[2] V. M. Babich, V. V. Ulin, “Kompleksnyi prostranstvenno-vremennoi luchevoi metod i “kvazifotony””, Matem. voprosy teorii rasprostraneniya voln. 12, Zap. nauchn. semin. LOMI, 117, 1981, 5–12 | Zbl

[3] A. P. Kachalov, “Sistema koordinat pri opisanii “kvazifotona””, Matem. voprosy teorii rasprostraneniya voln. 14, Zap. nauchn. sem. LOMI, 140, 1984, 73–76 | MR | Zbl

[4] A. .N. Norris, “Complex point-source representation of real point sources and the Gaussian beam summation method”, J. Opt. Soc. Am. A, 3:12 (1986), 2005–2010 | DOI

[5] V. M. Babich, “Kvazifotony i prostranstvenno-vremennoi luchevoi metod”, Matem. voprosy teorii rasprostraneniya voln. 36, Zap. nauchn. semin. POMI, 342, 2007, 5–13

[6] M. .M. Popov, N. M. Semtchenok, P. M. Popov, A. .R. Verdel, “Depth migration by the Gaussian beam summation method”, Geophysics, 75:2 (2010), S81–S93 | DOI

[7] M. Leibovich, E. Heyman, “Beam Summation Theory for Waves in Fluctuating Media. Part I: The Beam Frame and the Beam-Domain Scattering Matrix”, IEEE Transactions on Antennas and Propagation, 65:10 (2017), 5431–5442 | DOI | MR | Zbl

[8] M. Leibovich, E. Heyman, “Beam Summation Theory for Waves in Fluctuating Media. Part II: Stochastic Field Representation”, IEEE Transactions on Antennas and Propagation, 65:10 (2017), 5443–5452 | DOI | MR | Zbl

[9] E. Gorodnitskiy, M. Perel, Yu Geng, R.-S. Wu, “Depth migration with Gaussian wave packets based on Poincaré wavelets”, Geophysical Journal International, 205:1 (2016), 314–331 | DOI

[10] M. V. Perel, “Integral representation of solutions of the wave equation based on Poincaré wavelets”, Proceedings of the International Conference Days on Diffraction (Saint-Petersburg 2009), 2009, 159–161 | MR

[11] E. Gorodnitskiy, M. V. Perel, “The Poincaré wavelet transform: implementation and interpretation”, Proceedings of the International Conference Days on Diffraction (Saint-Petersburg 2011), 2011, 72–77

[12] M. V. Perel, E. Gorodnitskiy, “Integral representations of solutions of the wave equation based on relativistic wavelets”, J. of Phys. A: Math. and Theor., 45:38 (2012) | DOI | MR | Zbl

[13] E. A. Gorodnitskii, M. V. Perel, “Obosnovanie osnovannoi na veivletakh integralnoi formuly dlya resheniya volnovogo uravneniya”, Matem. voprosy teorii rasprostraneniya voln. 47, Zap. nauchn. sem. POMI, 461, 2017, 107–123

[14] A.P. Kiselev, M.V. Perel, “Gaussovskie volnovye pakety”, Optika i Spektroskopiya, 86:3 (1999), 357–359

[15] A.P. Kiselev, M.V. Perel, “Highly localized solutions of the wave equation”, J. Mathematical Physics, 41:4 (2000), 1034–1955 | DOI | MR

[16] M. V. Perel, M. S. Sidorenko, “New physical wavelet 'Gaussian wave packet'”, J. Physics A: Mathematical and Theoretical, 40:13 (2007), 3441 | DOI | MR | Zbl

[17] M. V. Perel, M. S. Sidorenko, “Wavelet-based integral representation for solutions of the wave equation”, J. Phys. A: Math. and Theor., 42:37 (2009), 375211 | DOI | MR | Zbl

[18] S. T. Ali, J.-P. Antoine, J. P. Gazeau, Coherent States, Wavelets, and Their Generalizations, Springer-Verlag, New York, 1999 | MR

[19] J.-P. Antoine, R. Murenzi, P. Vandergheynst, S. T. Ali, Two-Dimensional Wavelets and their Relatives, Cambridge University Press, 2004 | MR | Zbl

[20] I. M. Gelfand, R. A. Minlos, Z. Ya. Shapiro, Predstavleniya gruppy vraschenii i gruppy Lorentsa, ikh primeneniya, Gosudarstvennoe izd-vo fiz.-mat. literatury, M., 1958, 368 pp.

[21] M. V. Fedoryuk, Metod perevala, izd. 2, Knizhnyi dom LIBROKOM, M., 2010