@article{ZNSL_2020_493_a8,
author = {D. Gomez and S. A. Nazarov and M.-E. Perez},
title = {Pointwise fixation along the edge of the {Kirchhoff} plate},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {107--137},
year = {2020},
volume = {493},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a8/}
}
D. Gomez; S. A. Nazarov; M.-E. Perez. Pointwise fixation along the edge of the Kirchhoff plate. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 107-137. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a8/
[1] S. G. Mikhlin, Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR
[2] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002
[3] F. Gazzola, H. C. Grunau, G. Sweers, Polyharmonic Boundary Value Problems. Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains, Lecture Notes in Mathematics, 1991, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[4] G. Buttazzo, S. A. Nazarov, “Optimal location of support points in the Kirchhoff plate”, Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, Springer Optimization and Its Applications, 66, Springer-Verlag, Berlin, 2012, 93–116 | DOI
[5] G. Buttazzo, G. Cardone, S. A. Nazarov, “Thin elastic plates supported over small areas. II: Variational-Asymptotic Models”, J. of Convex Analysis, 24:3 (2017), 819–855 | MR | Zbl
[6] M. Sh. Birman, “O variatsionnom metode Trefftsa dlya uravneniya $\Delta^2u=f$”, Dokl. AN SSSR, 101:2 (1955), 201–204 | MR | Zbl
[7] O. M. Sapondzhyan, Izgib tonkikh uprugikh plit, Aiastan, Erevan, 1975
[8] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973
[9] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR
[10] O. M. Sapondzhyan, “Izgib svobodno opertoi poligonalnoi plity”, Izv. AN Arm. SSR, 5:2 (1952), 29–46 | Zbl
[11] V. G. Mazya, S. A. Nazarov, “O paradokse Sapondzhyana–Babushki v zadachakh teorii tonkikh plastin”, Dokl. AN ArmSSR, 78:3 (1984), 127–130 | Zbl
[12] S. A. Nazarov, G. Sweers, “A hinged plate equation and iterated Dirichlet Laplace operator on domains with concave corners”, J. Differential Equationsm, 233:1 (233), 151–180 | DOI | MR | Zbl
[13] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin–New York, 1994 | MR
[14] I. Babushka, “Ustoichivost oblasti opredeleniya po otnosheniyu k vozmuscheniyu granitsy osnovnykh zadach teorii differentsialnykh uravnenii v chastnykh proizvodnykh, glavnym obrazom v svyazi s teoriei uprugosti. 1; 2”, Chekhoslov. matem. zh., 11:1 (1961), 76–105
[15] V. G. Mazya, S. A. Nazarov, “Paradoksy predelnogo perekhoda v resheniyakh kraevykh zadach pri approksimatsii gladkikh oblastei mnogougolnymi”, Izvestiya AN SSSR. Seriya matem., 50:6 (1986), 1156–1177 | MR
[16] I. Babuška, J. Pitkaranta, “The plate paradox for hard and soft simple support”, SIAM J. Math. Anal., 21:3 (1990), 551–576 | DOI | MR | Zbl
[17] S. A. Nazarov, M. V. Olyushin, “Priblizhenie gladkikh konturov mnogougolnymi. Paradoksy v zadachakh dlya sistemy Lame”, Izv. RAN, Seriya matem., 61:3 (1997), 159–186 | MR | Zbl
[18] S. A. Nazarov, A. Stilyanou, G. Sweers, “Hinged and supported plates with corners”, Z. Angew. Math. Phys. Zeitschrift fur Angewandte Mathematik und Physik, 63 (2012), 929–960 | DOI | MR | Zbl
[19] S. A. Nazarov, G. A. Chechkin, “Approksimatsiya tonkikh trekhmernykh plastin s gladkoi bokovoi poverkhnostyu mnogogrannymi”, Problemy matem. anal., 81, Novosibirsk, 2015, 55–81 | Zbl
[20] J. M. Arrieta, P. D. Lamberti, “Higher order elliptic operators on variable domains. Stability results and boundary oscillations for intermediate problems”, J. Differential Equations, 263 (2017), 4222–4266 | DOI | MR | Zbl
[21] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971
[22] O. A. Oleinik, G. A. Iosifyan, A. S. Shamaev, Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, izd-vo MGU, M., 1990 | MR
[23] M. Van-Dyke, Perturbation Methods in Fluid Mechanics, Acad. Press, N.Y.–L., 1964, 310 pp. ; Van Daik M.D., Metody vozmuschenii v mekhanike zhidkostei, Mir, M., 1967 | MR | Zbl
[24] V. M. Babich, N. Ya. Kirpicnikova, The Boundary-Layer Method in Diffraction Problems, Springer-Verlag, Berlin, 1979 | MR | MR | Zbl
[25] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp.
[26] E. Sánchez-Palencia, Nonhomogeneous Media and Vibration Theory, Lecture Notes in Physics, 127, Springer-Verlag, Berlin–New York, 1980 | MR
[27] E. Pérez, “On periodic Steklov type eigenvalue problems on half-band and the spectral homogenization problem”, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 859–883 | MR | Zbl
[28] S. A. Nazarov, E. Pérez, “New asymptotic effects for the spectrum of problems on concentrated masses near the boundary”, C. R. Mecanique, 337:8 (2009), 585–590 | DOI
[29] S. A. Nazarov, M. E. Perez, “On multi-scale asymptotic structure of eigenfunctions in a boundary value problem with concentrated masses near the boundary”, Revista Matemática Complutense, 31:1 (2018), 1–62 | DOI | MR | Zbl
[30] S. A. Nazarov, R. Orive-Illera, M. E. Perez-Martinez, “Asymptotic structure of the spectrum in a Dirichlet-strip with double periodic perforations”, Networks and heterogeneous media, 14:4 (2019), 733–757 | DOI | MR | Zbl
[31] G. Nguetseng, E. Sanchez-Palencia, “Stress concentration for defects distributed near a surface”, Local Effects in the Analysis of Structures, Stud. Appl. Mech., 12, Elsevier, Amsterdam, 1985, 55–74 | DOI | MR
[32] S. A. Nazarov, “Asimptotika reshenii i modelirovanie zadach teorii uprugosti v oblasti s bystroostsilliruyuschei granitsei”, Izvestiya RAN. Seriya matem., 72:3 (2008), 103–158 | MR | Zbl
[33] D. Gomez, S. A. Nazarov, E. Perez, “Homogenization of Winkler-Steklov spectral conditions in three-dimensional linear elasticity”, Z. Angew. Math. Phys., 69:2 (35) | DOI | MR
[34] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Moskovsk. matem. obschestva, 16, 1963, 219–292
[35] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | MR | Zbl
[36] Maz'ya V., Nazarov S., Plamenevskij B., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, 2, Birkhäuser Verlag, Basel, 2000 | MR | MR