On the uniqueness of continuation for polynomials of harmonic quaternion fields
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 102-106
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper provides a counterexample to the hypothesis on the uniqueness of continuation for polynomials of harmonic quaternion fields in a compact domain with a nonanalytic metric. The constructed polynomial vanishes identically in a neighborhood of the boundary. A connection of this construction with the problem on resonances of the Schroedinger operator on a line is noted.
			
            
            
            
          
        
      @article{ZNSL_2020_493_a7,
     author = {A. F. Vakulenko},
     title = {On the uniqueness of continuation for polynomials of harmonic quaternion fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {102--106},
     publisher = {mathdoc},
     volume = {493},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a7/}
}
                      
                      
                    A. F. Vakulenko. On the uniqueness of continuation for polynomials of harmonic quaternion fields. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 102-106. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a7/