On the uniqueness of continuation for polynomials of harmonic quaternion fields
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 102-106
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper provides a counterexample to the hypothesis on the uniqueness of continuation for polynomials of harmonic quaternion fields in a compact domain with a nonanalytic metric. The constructed polynomial vanishes identically in a neighborhood of the boundary. A connection of this construction with the problem on resonances of the Schroedinger operator on a line is noted.
@article{ZNSL_2020_493_a7,
author = {A. F. Vakulenko},
title = {On the uniqueness of continuation for polynomials of harmonic quaternion fields},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {102--106},
year = {2020},
volume = {493},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a7/}
}
A. F. Vakulenko. On the uniqueness of continuation for polynomials of harmonic quaternion fields. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 102-106. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a7/
[1] M. I. Belishev, N. D. Filonov, S. T. Krymskiy, A. F. Vakulenko, On uniqueness of continuation for polynomials of solutions to second-order elliptic PDE, Applicable Analysis, 2020
[2] M. I. Belishev, A. F. Vakulenko, “On algebraic and uniqueness properties of 3d harmonic quaternion fields”, CUBO A Mathematical J., 21:1 (2019), 1–19 | DOI | MR | Zbl
[3] E. Korotyaev, “Inverse Resonance Scattering on the Half Line”, Asymptot. Anal., 37 (1985), 215–226 | MR
[4] G. Schwarz, Hödge decomposition – a method for solving boundary value problems, Lect. Notes Math., 1607, Springer-Verlag, Berlin, 1995 | DOI | MR | Zbl