Characterization of data in dynamical inverse problem for the 1d wave equation with matrix potential
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 48-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The dynamical system under consideration is \begin{align*} & u_{tt}-u_{xx}+Vu=0, x>0, t>0; & u|_{t=0}=u_t|_{t=0}=0, x\geqslant 0; u|_{x=0}=f, t\geqslant 0, \end{align*} where $V=V(x)$ is a matrix-valued function (potential); $f=f(t)$ is an $\mathbb R^N$-valued function of time (boundary control); $u=u^f(x,t)$ is a trajectory (an $\mathbb R^N$-valued function of $x$ and $t$). The input/output map of the system is a response operator $R:f\mapsto u^f_x(0,\cdot), t\geqslant0$. The inverse problem is to determine $V$ from given $R$. To characterize its data is to provide the necessary and sufficient conditions on $R$ that ensure its solvability. The procedure that solves this problem has long been known and the characterization has been announced (Avdonin and Belishev, 1996). However, the proof was not provided and, moreover, it turned out that the formulation of the sufficiency must be corrected. Our paper fills this gap.
@article{ZNSL_2020_493_a4,
     author = {M. I. Belishev and T. Sh. Khabibullin},
     title = {Characterization of data in dynamical inverse problem for the 1d wave equation with matrix potential},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {48--72},
     year = {2020},
     volume = {493},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a4/}
}
TY  - JOUR
AU  - M. I. Belishev
AU  - T. Sh. Khabibullin
TI  - Characterization of data in dynamical inverse problem for the 1d wave equation with matrix potential
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 48
EP  - 72
VL  - 493
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a4/
LA  - ru
ID  - ZNSL_2020_493_a4
ER  - 
%0 Journal Article
%A M. I. Belishev
%A T. Sh. Khabibullin
%T Characterization of data in dynamical inverse problem for the 1d wave equation with matrix potential
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 48-72
%V 493
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a4/
%G ru
%F ZNSL_2020_493_a4
M. I. Belishev; T. Sh. Khabibullin. Characterization of data in dynamical inverse problem for the 1d wave equation with matrix potential. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 48-72. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a4/

[1] S. A. Avdonin, M. I. Belishev, “Boundary control and dynamical inverse problem for nonselfadjoint Sturm-Liouville operator (BC-method)”, Control and Cybernetics, 25:3 (1996), 429–440 | MR | Zbl

[2] S.A. Avdonin, M.I. Belishev, Yu.S. Ryzhkov, “Dinamicheskaya obratnaya zadacha dlya nesamosopryazhennogo operatora Shturma–Liuvillya”, Zapiski Nauchnykh Seminarov POMI, 250, 1998, 7–21 | Zbl

[3] M. I. Belishev, “Boundary Control Method in Dynamical Inverse Problems – An Introductory Course by M. I. Belishev”, Dynamical Inverse Problems: Theory and Application, CISM Courses and Lectures, 529, eds. Gladwell G. M. L., Morassi A., Springer, Wien, 2011, 85–150 | MR | Zbl

[4] M.I. Belishev, A.L. Pestov, “Kharakterizatsiya dannykh obratnoi zadachi dlya odnomernoi dvukhskorostnoi dinamicheskoi sistemy”, Algebra i Analiz, 26:3 (2014), 89–130

[5] M. I. Belishev, “Boundary Control Method”, Encyclopedia of Applied and Computational Mathematics, v. 1, 142–146 | DOI

[6] M. I. Belishev, A. F. Vakulenko, “On characterization of inverse data in the boundary control method”, Rend. Istit. Mat. Univ. Trieste, 48 (2016), 49–77 | MR | Zbl

[7] M.I. Belishev, “Granichnoe upravlenie i tomografiya rimanovykh mnogoobrazii”, Uspekhi Matematicheskikh Nauk, 72:4(436), 3–66 | MR | Zbl

[8] M.I. Belishev, A.S. Blagoveschenskii, Dinamicheskie obratnye zadachi teorii voln, S-Pb Gosudarstvennyi Universitet, SPb, 1999

[9] M. I. Belishev, V. S. Mikhaylov, “Inverse problem for one-dimensional dynamical Dirac system (BC-method)”, Inverse Problems, 30:12 (2014) | DOI | MR | Zbl

[10] A.S.Blagoveschenskii, “O lokalnom metode resheniya nestatsionarnoi obratnoi zadachi dlya neodnorodnoi struny”, Trudy MIAN im V. A. Steklova, 115, 1971, 28–38

[11] A.S.Blagoveschenskii, “O nesamosopryazhennoi matrichnoi obratnoi zadache dlya giperbolicheskogo differentsialnogo uravneniya”, Problemy Mat. Fiziki, 5 (1972), 38–61

[12] A. S. Blagovestchenskii, Inverse Problems of Wave Processes, ZSP, Netherlands, 2001

[13] I.Ts. Gokhberg, M.G. Krein, Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967