@article{ZNSL_2020_493_a4,
author = {M. I. Belishev and T. Sh. Khabibullin},
title = {Characterization of data in dynamical inverse problem for the 1d wave equation with matrix potential},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {48--72},
year = {2020},
volume = {493},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a4/}
}
TY - JOUR AU - M. I. Belishev AU - T. Sh. Khabibullin TI - Characterization of data in dynamical inverse problem for the 1d wave equation with matrix potential JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 48 EP - 72 VL - 493 UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a4/ LA - ru ID - ZNSL_2020_493_a4 ER -
%0 Journal Article %A M. I. Belishev %A T. Sh. Khabibullin %T Characterization of data in dynamical inverse problem for the 1d wave equation with matrix potential %J Zapiski Nauchnykh Seminarov POMI %D 2020 %P 48-72 %V 493 %U http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a4/ %G ru %F ZNSL_2020_493_a4
M. I. Belishev; T. Sh. Khabibullin. Characterization of data in dynamical inverse problem for the 1d wave equation with matrix potential. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 48-72. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a4/
[1] S. A. Avdonin, M. I. Belishev, “Boundary control and dynamical inverse problem for nonselfadjoint Sturm-Liouville operator (BC-method)”, Control and Cybernetics, 25:3 (1996), 429–440 | MR | Zbl
[2] S.A. Avdonin, M.I. Belishev, Yu.S. Ryzhkov, “Dinamicheskaya obratnaya zadacha dlya nesamosopryazhennogo operatora Shturma–Liuvillya”, Zapiski Nauchnykh Seminarov POMI, 250, 1998, 7–21 | Zbl
[3] M. I. Belishev, “Boundary Control Method in Dynamical Inverse Problems – An Introductory Course by M. I. Belishev”, Dynamical Inverse Problems: Theory and Application, CISM Courses and Lectures, 529, eds. Gladwell G. M. L., Morassi A., Springer, Wien, 2011, 85–150 | MR | Zbl
[4] M.I. Belishev, A.L. Pestov, “Kharakterizatsiya dannykh obratnoi zadachi dlya odnomernoi dvukhskorostnoi dinamicheskoi sistemy”, Algebra i Analiz, 26:3 (2014), 89–130
[5] M. I. Belishev, “Boundary Control Method”, Encyclopedia of Applied and Computational Mathematics, v. 1, 142–146 | DOI
[6] M. I. Belishev, A. F. Vakulenko, “On characterization of inverse data in the boundary control method”, Rend. Istit. Mat. Univ. Trieste, 48 (2016), 49–77 | MR | Zbl
[7] M.I. Belishev, “Granichnoe upravlenie i tomografiya rimanovykh mnogoobrazii”, Uspekhi Matematicheskikh Nauk, 72:4(436), 3–66 | MR | Zbl
[8] M.I. Belishev, A.S. Blagoveschenskii, Dinamicheskie obratnye zadachi teorii voln, S-Pb Gosudarstvennyi Universitet, SPb, 1999
[9] M. I. Belishev, V. S. Mikhaylov, “Inverse problem for one-dimensional dynamical Dirac system (BC-method)”, Inverse Problems, 30:12 (2014) | DOI | MR | Zbl
[10] A.S.Blagoveschenskii, “O lokalnom metode resheniya nestatsionarnoi obratnoi zadachi dlya neodnorodnoi struny”, Trudy MIAN im V. A. Steklova, 115, 1971, 28–38
[11] A.S.Blagoveschenskii, “O nesamosopryazhennoi matrichnoi obratnoi zadache dlya giperbolicheskogo differentsialnogo uravneniya”, Problemy Mat. Fiziki, 5 (1972), 38–61
[12] A. S. Blagovestchenskii, Inverse Problems of Wave Processes, ZSP, Netherlands, 2001
[13] I.Ts. Gokhberg, M.G. Krein, Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967