@article{ZNSL_2020_493_a3,
author = {I. V. Baibulov},
title = {Justification of the asymptotics of three one-dimensional short-range particles scattering problem solution for the processes $3\to2$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {40--47},
year = {2020},
volume = {493},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a3/}
}
TY - JOUR AU - I. V. Baibulov TI - Justification of the asymptotics of three one-dimensional short-range particles scattering problem solution for the processes $3\to2$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 40 EP - 47 VL - 493 UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a3/ LA - ru ID - ZNSL_2020_493_a3 ER -
%0 Journal Article %A I. V. Baibulov %T Justification of the asymptotics of three one-dimensional short-range particles scattering problem solution for the processes $3\to2$ %J Zapiski Nauchnykh Seminarov POMI %D 2020 %P 40-47 %V 493 %U http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a3/ %G ru %F ZNSL_2020_493_a3
I. V. Baibulov. Justification of the asymptotics of three one-dimensional short-range particles scattering problem solution for the processes $3\to2$. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 40-47. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a3/
[1] I. V. Baibulov, A. M. Budylin, S. B. Levin, “Zadacha rasseyaniya trekh odnomernykh korotkodeistvuyuschikh kvantovykh chastits pri nalichii svyazannykh sostoyanii v parnykh podsistemakh. Koordinatnye asimptotiki yadra rezolventy i sobstvennykh funktsii absolyutno nepreryvnogo spektra”, Zap. nauchn. sem. POMI, 483, 2019, 5–18 | MR
[2] L. D. Faddeev, “Matematicheskie voprosy kvantovoi teorii rasseyaniya dlya sistemy trekh chastits”, Tr. MIAN SSSR, 69, 1963, 3–122
[3] I. V. Baibulov, A. M. Budylin, S. B. Levin, “On justification of the asymptotics of eigenfunctions of the absolutely continuous spectrum in the problem of three one-dimensional short-range quantum particles with repulsion”, J. Math. Sci., 238:5 (2019), 566–590 | DOI | MR | Zbl