On the $T$-matrix in the electrostatic problem for the spheroidal particle with a spherical core
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 336-352 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A solution to the electrostatic problem for the spheroidal particle with a spherical core is constructed. To involve the problem geometry in a full manner, in a vicinity of the particle surface the potentials of the fields are represented by their expansions in terms of spheroidal harmonics of Laplace's equation, while in a vicinity of the core surface by the expansions in terms of spherical harmonics. Matching of the fields inside the particle shell is made by using the relations between the spheroidal and spherical harmonics. The $T$-matrix relates the coefficients of expansions of the incident and “scattered” fields. In the paper, both the particle polarizability related to the main matrix element $T_{11}$, and the whole $T$-matrix are considered. The symmetry of the matrix as well as its dependence on the size of the layered particle are shown. A relation between the $T$-matrixes in the spherical and spheroidal systems was also found. Numerical calculations made for particles of small and large aspect ratios ($a/b = 1.5 - 5.0$) confirmed high efficiency of the suggested solution in contrast to the methods that use a single spherical basis.
@article{ZNSL_2020_493_a22,
     author = {V. G. Farafonov and V. I. Ustimov and A. E. Farafonova and V. B. Il'in},
     title = {On the $T$-matrix in the electrostatic problem for the spheroidal particle with a spherical core},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {336--352},
     year = {2020},
     volume = {493},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a22/}
}
TY  - JOUR
AU  - V. G. Farafonov
AU  - V. I. Ustimov
AU  - A. E. Farafonova
AU  - V. B. Il'in
TI  - On the $T$-matrix in the electrostatic problem for the spheroidal particle with a spherical core
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 336
EP  - 352
VL  - 493
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a22/
LA  - ru
ID  - ZNSL_2020_493_a22
ER  - 
%0 Journal Article
%A V. G. Farafonov
%A V. I. Ustimov
%A A. E. Farafonova
%A V. B. Il'in
%T On the $T$-matrix in the electrostatic problem for the spheroidal particle with a spherical core
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 336-352
%V 493
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a22/
%G ru
%F ZNSL_2020_493_a22
V. G. Farafonov; V. I. Ustimov; A. E. Farafonova; V. B. Il'in. On the $T$-matrix in the electrostatic problem for the spheroidal particle with a spherical core. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 336-352. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a22/

[1] K. Boren, D. Khaffmen, Pogloschenie i rasseyanie sveta malymi chastitsami, Mir, M., 1986

[2] V. V. Klimov, Nanoplazmonika, Fizmatlit, M., 2009

[3] F. M. Morc, G. Feshbakh, Metody teoreticheskoi fiziki, IL, M., 1958

[4] V. G. Farafonov, V. I. Ustimov, M. V. Sokolovskaya, “Uslovie primenimosti EVSM dlya malykh mnogosloinykh chastits”, Opt. i spektr., 120 (2016), 470–483

[5] V. I. Komarov, L. I. Ponomarev, S. Yu. Slavyanov, Sferoidalnye i kulonovskie sferoidalnye funktsii, Nauka, M., 1976

[6] V. G. Farafonov, V. I. Ustimov, V. B. Ilin, “Sootnosheniya mezhdu sferoidalnymi garmonikami i priblizhenie Releya dlya mnogosloinykh nesofokusnykh sferoidov”, Zap. nauch. semin. POMI, 483, 2019, 199–240 | MR

[7] V. G. Farafonov, V. I. Ustimov, “O svoistvakh T-matritsy v releevskom priblizhenii”, Opt. i spektr., 119 (2015), 1020–1032

[8] V. G. Farafonov, V. I. Ustimov, “Rasseyanie sveta malymi mnogosloinymi chastitsami: obobschennyi metod razdeleniya peremennykh”, Opt. i spektr., 124 (2018), 255–263

[9] V. G. Farafonov, V. B. Ilin, “O primenimosti sfericheskogo bazisa dlya sferoidalnykh sloistykh rasseivatelei”, Opt. i spektr., 115 (2013), 836–843

[10] V. G. Farafonov, “Gipoteza Releya i oblast primenimosti metoda rasshirennykh granichnykh uslovii v elektrostaticheskikh zadachakh dlya nesfericheskikh chastits”, Opt. i spektr., 117 (2014), 949–962