On matching of the integral asymptotics for a surface wave of interference type with the wavefield of the source
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 314-322 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to development of new conception of surface waves propagation along smooth surfaces in $\mathbb R^3$. Matching of integral asymptotics with the source of surface waves provides single-valued form of the integral of localized, in a vicinity of geodesic lines, solutions of the wave equation.
@article{ZNSL_2020_493_a20,
     author = {M. M. Popov},
     title = {On matching of the integral asymptotics for a surface wave of interference type with the wavefield of the source},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {314--322},
     year = {2020},
     volume = {493},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a20/}
}
TY  - JOUR
AU  - M. M. Popov
TI  - On matching of the integral asymptotics for a surface wave of interference type with the wavefield of the source
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 314
EP  - 322
VL  - 493
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a20/
LA  - ru
ID  - ZNSL_2020_493_a20
ER  - 
%0 Journal Article
%A M. M. Popov
%T On matching of the integral asymptotics for a surface wave of interference type with the wavefield of the source
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 314-322
%V 493
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a20/
%G ru
%F ZNSL_2020_493_a20
M. M. Popov. On matching of the integral asymptotics for a surface wave of interference type with the wavefield of the source. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 314-322. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a20/

[1] M. M. Popov, “On theory of surface wave propagation on smooth strictly convex surfaces embedded in $\mathbb R^3$”, Proceedings of the International Conference Day on Diffraction, 2019, 159–162 | MR

[2] M. M. Popov, “Novaya kontseptsiya poverkhnostnykh voln interferentsionnogo tipa dlya gladkikh strogo vypuklykh poverkhnostei, vlozhennykh v $\mathbb R^3$”, Zap. nauchn. sem. POMI, 493, 2020, 301–313

[3] M. M. Popov, “Novyi metod rascheta volnovykh polei v vysokochastotnom priblizhenii”, Zap. nauchn. sem. LOMI, 104, 1981, 195–216 | Zbl

[4] V. A. Fok, Problemy difraktsii i rasprostraneniya elektromagnitnykh voln, Izd-vo “Sovetskoe radio”, M., 1970

[5] M. M. Popov, “Ob odnom metode vychisleniya geometricheskogo raskhozhdeniya v neodnorodnoi srede, soderzhaschei granitsy razdela”, Dokl. AN SSSR, 237:5 (1977), 1059–1062

[6] M. M. Popov, L. G. Tyurikov, O dvukh podkhodakh k vychisleniyu geometricheskogo raskhozhdeniya v neodnorodnoi izotropnoi srede, Sb. 20, “Nauka”, L., 1981, 61–68

[7] M. M. Popov, Ray theory and Gaussian beam method for geophysicists, EDUFBA, Salvador-Bahia, 2002

[8] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln: Metod etalonnykh zadach, “Leningradskii universitet”, L., 1972