On matching of the integral asymptotics for a surface wave of interference type with the wavefield of the source
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 314-322
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to development of new conception of surface waves propagation along smooth surfaces in $\mathbb R^3$. Matching of integral asymptotics with the source of surface waves provides single-valued form of the integral of localized, in a vicinity of geodesic lines, solutions of the wave equation.
@article{ZNSL_2020_493_a20,
author = {M. M. Popov},
title = {On matching of the integral asymptotics for a surface wave of interference type with the wavefield of the source},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {314--322},
publisher = {mathdoc},
volume = {493},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a20/}
}
TY - JOUR AU - M. M. Popov TI - On matching of the integral asymptotics for a surface wave of interference type with the wavefield of the source JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 314 EP - 322 VL - 493 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a20/ LA - ru ID - ZNSL_2020_493_a20 ER -
%0 Journal Article %A M. M. Popov %T On matching of the integral asymptotics for a surface wave of interference type with the wavefield of the source %J Zapiski Nauchnykh Seminarov POMI %D 2020 %P 314-322 %V 493 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a20/ %G ru %F ZNSL_2020_493_a20
M. M. Popov. On matching of the integral asymptotics for a surface wave of interference type with the wavefield of the source. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 314-322. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a20/