On matching of the integral asymptotics for a surface wave of interference type with the wavefield of the source
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 314-322

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to development of new conception of surface waves propagation along smooth surfaces in $\mathbb R^3$. Matching of integral asymptotics with the source of surface waves provides single-valued form of the integral of localized, in a vicinity of geodesic lines, solutions of the wave equation.
@article{ZNSL_2020_493_a20,
     author = {M. M. Popov},
     title = {On matching of the integral asymptotics for a surface wave of interference type with the wavefield of the source},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {314--322},
     publisher = {mathdoc},
     volume = {493},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a20/}
}
TY  - JOUR
AU  - M. M. Popov
TI  - On matching of the integral asymptotics for a surface wave of interference type with the wavefield of the source
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 314
EP  - 322
VL  - 493
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a20/
LA  - ru
ID  - ZNSL_2020_493_a20
ER  - 
%0 Journal Article
%A M. M. Popov
%T On matching of the integral asymptotics for a surface wave of interference type with the wavefield of the source
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 314-322
%V 493
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a20/
%G ru
%F ZNSL_2020_493_a20
M. M. Popov. On matching of the integral asymptotics for a surface wave of interference type with the wavefield of the source. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 314-322. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a20/