Modelling of surface water waves concentrated near moving points
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 29-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A numerical model of wave packets on the surface of the reservoir was built with slowly changing depth, concentrated in the vicinity moving points along space-time rays with group velocity (such wave packets are called quasiphotons). At the bottom, profile of the reservoir was taken as the bottom profile of the Gulf of Finland in the coastal zone of the Sestroretsk approach fairway.
@article{ZNSL_2020_493_a2,
     author = {A. E. Baranov and A. I. Popov and I. Yu. Popov},
     title = {Modelling of surface water waves concentrated near moving points},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {29--39},
     year = {2020},
     volume = {493},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a2/}
}
TY  - JOUR
AU  - A. E. Baranov
AU  - A. I. Popov
AU  - I. Yu. Popov
TI  - Modelling of surface water waves concentrated near moving points
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 29
EP  - 39
VL  - 493
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a2/
LA  - ru
ID  - ZNSL_2020_493_a2
ER  - 
%0 Journal Article
%A A. E. Baranov
%A A. I. Popov
%A I. Yu. Popov
%T Modelling of surface water waves concentrated near moving points
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 29-39
%V 493
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a2/
%G ru
%F ZNSL_2020_493_a2
A. E. Baranov; A. I. Popov; I. Yu. Popov. Modelling of surface water waves concentrated near moving points. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 29-39. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a2/

[1] V. M. Babich, V. S. Buldyrev, I. A. Molotkov, Prostranstvenno-vremennoi luchevoi metod: lineinye i nelineinye volny, Izdatelstvo LGU, L., 1985, 272 pp. | MR

[2] V. M. Babich , V. V. Ulin, “Kompleksnyi prostranstvenno-vremennoi luchevoi metod i kvazifotony”, Zap. nauchn. semin. LOMI, 117, 1981, 5–11

[3] V. M. Babich, V. V. Ulin, “Kompleksnye luchevye resheniya i sobstvennye funktsii, sosredotochennye v okrestnosti zamknutoi geodezicheskoi”, Zap. nauchn. semin. LOMI, 104, 1980, 6–13

[4] V. E. Nomofilov, “Asimptoticheskie resheniya sistemy uravnenii vtorogo poryadka, sosredotochennye v okrestnosti lucha”, Zap. nauchn semin. LOMI, 104, 1980, 170–179 | MR

[5] A. P. Kachalov, “Sistema koordinat pri opisanii kvazifotonov”, Zap. nauchn. semin. LOMI, 140, 1984, 73–76 | MR | Zbl

[6] V. M. Babich, “Kvazifotony i prostranstvenno-vremennoi luchevoi metod”, Zapiski nauchnykh seminarov POMI, 342, 2008, 5–13 | Zbl

[7] V. M. Babich, A. I. Popov, “Kvazifotony voln na poverkhnosti tyazheloi zhidkosti”, Zap. nauchn. semin. POMI, 379, 2010, 5–23

[8] V. M. Babich, A. I. Popov, “Asimptoticheskoe reshenie uravneniya Gamiltona-Yakobi, sosredotochennoe vblizi poverkhnosti”, Zap. nauchn. semin. POMI, 393, 2011, 23–28

[9] A. P. Kachalov, “Nestatsionarnye elektromagnitnye gaussovy puchki v neodnorodnoi anizotropnoi srede”, Zap. nauchn. semin. POMI, 264, 2000, 83–100 | Zbl

[10] J. Math. Sci. (New York), 91:2 (1998), 2725–2732 | DOI | MR | Zbl

[11] M. M. Popov, Ray Method and Gaussian Beam Method for Geophysicists, EDUFBA, Salvador, 2002

[12] V. V. Belov, A. Yu. Trifonov, A. V. Shapovalov, “Kvaziklassicheskoe traektorno-kogerentnoe priblizhenie dlya uravnenii tipa Khartri”, Teoreticheskaya i matematicheskaya fizika, 130:8 (2002), 460–492 | Zbl

[13] V. G. Bagrov, V. V. Belov, A. Y. Trifonov, “Semiclassical trajectory-coherent approximation in quantum mechanics I. High-order corrections to multidimensional time-dependent equations of Schrödinger type”, Annals of Physics, 246:2 (1996), 231–290 | DOI | MR | Zbl

[14] Karta glubin Finskogo zaliva, http://fishingpiter.ru/maps/zaliv/