@article{ZNSL_2020_493_a19,
author = {M. M. Popov},
title = {New concept of surface waves of interference nature on smooth, strictly convex surfaces embedded in $\mathbb R^3$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {301--313},
year = {2020},
volume = {493},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a19/}
}
TY - JOUR AU - M. M. Popov TI - New concept of surface waves of interference nature on smooth, strictly convex surfaces embedded in $\mathbb R^3$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 301 EP - 313 VL - 493 UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a19/ LA - ru ID - ZNSL_2020_493_a19 ER -
M. M. Popov. New concept of surface waves of interference nature on smooth, strictly convex surfaces embedded in $\mathbb R^3$. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 301-313. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a19/
[1] V. A. Fok, Problemy difraktsii i rasprostraneniya elektromagnitnykh voln, Sovetskoe radio, M., 1970
[2] V. M. Babich, N. Ya. Kirpichnikova, Metod pogranichnogo sloya v zadachakh difraktsii, Leningradskii universitet, L., 1974 | MR
[3] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln: Metod etalonnykh zadach, Leningradskii universitet, L., 1972
[4] M. M. Popov, “Novyi metod rascheta volnovykh polei v vysokochastotnom priblizhenii”, Zap. nauchn. sem. LOMI, 104, 1981, 195–216 | Zbl
[5] M. M. Popov, “K zadache o volnakh shepchuschei galerei v okrestnosti prostogo nulya effektivnoi krivizny granitsy”, Zap. nauchn. sem. LOMI, 62, 1976, 197–206 | Zbl
[6] M. M. Popov, N. M.Semtchenok, P. M. Popov, A. R. Verdel, “Depth migration by the Gaussian beam summation method”, Geophysics, 75:2 (2010), 1MA–Z39 | DOI
[7] M. M. Popov, “Ob indekse Morsa geodezicheskikh na gladkikh poverkhnostyakh, vlozhennykh v $\mathbb R^3$”, Zap. nauchn. sem. POMI, 471, 2018, 211–224