Parametric resonance and theory of Bragg waveguides
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 288-300

Voir la notice de l'article provenant de la source Math-Net.Ru

This review paper summarizes a new analytical approach to the theory of waves in periodic media developed in relation with the problems of fiber optics. An adequate definition of the oscillation phase, used as an independent variable, allows us to construct an infinite set of exact solutions describing excitation and damping of parametric oscillations, beyond perturbation theory.
@article{ZNSL_2020_493_a18,
     author = {A. V. Popov and V. A. Baskakov and D. V. Prokopovich},
     title = {Parametric resonance and theory of {Bragg} waveguides},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {288--300},
     publisher = {mathdoc},
     volume = {493},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a18/}
}
TY  - JOUR
AU  - A. V. Popov
AU  - V. A. Baskakov
AU  - D. V. Prokopovich
TI  - Parametric resonance and theory of Bragg waveguides
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 288
EP  - 300
VL  - 493
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a18/
LA  - ru
ID  - ZNSL_2020_493_a18
ER  - 
%0 Journal Article
%A A. V. Popov
%A V. A. Baskakov
%A D. V. Prokopovich
%T Parametric resonance and theory of Bragg waveguides
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 288-300
%V 493
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a18/
%G ru
%F ZNSL_2020_493_a18
A. V. Popov; V. A. Baskakov; D. V. Prokopovich. Parametric resonance and theory of Bragg waveguides. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 288-300. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a18/