Parametric resonance and theory of Bragg waveguides
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 288-300
Voir la notice de l'article provenant de la source Math-Net.Ru
This review paper summarizes a new analytical approach to the theory of waves in periodic media developed in relation with the problems of fiber optics. An adequate definition of the oscillation phase, used as an independent variable, allows us to construct an infinite set of exact solutions describing excitation and damping of parametric oscillations, beyond perturbation theory.
@article{ZNSL_2020_493_a18,
author = {A. V. Popov and V. A. Baskakov and D. V. Prokopovich},
title = {Parametric resonance and theory of {Bragg} waveguides},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {288--300},
publisher = {mathdoc},
volume = {493},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a18/}
}
TY - JOUR AU - A. V. Popov AU - V. A. Baskakov AU - D. V. Prokopovich TI - Parametric resonance and theory of Bragg waveguides JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 288 EP - 300 VL - 493 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a18/ LA - ru ID - ZNSL_2020_493_a18 ER -
A. V. Popov; V. A. Baskakov; D. V. Prokopovich. Parametric resonance and theory of Bragg waveguides. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 288-300. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a18/