Parametric resonance and theory of Bragg waveguides
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 288-300 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This review paper summarizes a new analytical approach to the theory of waves in periodic media developed in relation with the problems of fiber optics. An adequate definition of the oscillation phase, used as an independent variable, allows us to construct an infinite set of exact solutions describing excitation and damping of parametric oscillations, beyond perturbation theory.
@article{ZNSL_2020_493_a18,
     author = {A. V. Popov and V. A. Baskakov and D. V. Prokopovich},
     title = {Parametric resonance and theory of {Bragg} waveguides},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {288--300},
     year = {2020},
     volume = {493},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a18/}
}
TY  - JOUR
AU  - A. V. Popov
AU  - V. A. Baskakov
AU  - D. V. Prokopovich
TI  - Parametric resonance and theory of Bragg waveguides
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 288
EP  - 300
VL  - 493
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a18/
LA  - ru
ID  - ZNSL_2020_493_a18
ER  - 
%0 Journal Article
%A A. V. Popov
%A V. A. Baskakov
%A D. V. Prokopovich
%T Parametric resonance and theory of Bragg waveguides
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 288-300
%V 493
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a18/
%G ru
%F ZNSL_2020_493_a18
A. V. Popov; V. A. Baskakov; D. V. Prokopovich. Parametric resonance and theory of Bragg waveguides. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 288-300. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a18/

[1] A. Yariv, P. Yeh, Optical Waves in Crystals, 2002

[2] E. M. Dianov, M. E. Likhachev, S. Février, “Solid-core photonic bandgap fibers for high-power fiber lasers”, IEEE J. Selected Topics in Quantum Electronics, 15:1 (2009), 20–29 | DOI

[3] P. Yeh, A. Yariv, E. Marom, “Theory of Bragg fiber”, J. Opt. Soc. Amer., 68:9 (1978), 1196–1201 | DOI

[4] S. Février, P. Viale, F. Gerome, P. Leproux, P. Roy, J.-M. Blondy, B. Dussardier, G. Monnom, “Very large effective area singlemode photonic bandgap fiber”, Electronics Letters, 39:17 (2003), 1240–1242 | DOI

[5] S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. I. Salganskii, A. N. Gurianov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber”, Opt. Express, 14 (2006), 562–569 | DOI

[6] M. Likhachev, S. Semjonov, A. Popov, A. Vinogradov, E. M. Dianov, “Depressed core Bragg waveguides: experiment and simulation”, Proceedings of 6th International Conference on Transparent Optical Networks, ICTON 2004 (Wroclaw, Poland, 2004), v. 2, 117–120

[7] L. D. Landau, E. M. Lifszitz, Mechanics, Elsevier, 1982, 224 pp. | MR

[8] A. V. Vinogradov, A. V. Popov, D. V. Prokopovich, “On the explicit parametric description of waves in periodic media”, Comput. Math. Math. Phys., 49:6 (2009), 1069–1079 | DOI | MR | Zbl

[9] A. Popov, “Parametric resonance and waves in periodic media”, Proc. 11th Internat. Conf. on Transparent Optical Networks (Ponta Delgada, Portugal, 2009), Th.A4.4, 4 pp.

[10] A. Popov, M. Popova, “Parametric representation of traveling waves in periodic media”, Proc. Internat. Conf. on Transparent Optical Networks (Stockholm, 2011), We.A2.2, 4 pp.

[11] A. V. Popov, V. Kovalchuk, Parametric representation of wave propagation in non-uniform media (both in transmission and stop bands), Mathematical Methods in the Applied Sciences, Wiley, 2012 | DOI | MR

[12] A. D. Dolgov, A. V. Popov, A. S. Rudenko, “Shape of the inflaton potential and the efficiency of the universe heating”, Eur. Phys. J. C, 437:75 (2015) | DOI