Acoustic, electromagnetic and elastic wavefield energy expression via its asymptotics at large times and distances
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 269-287 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Simple formulae expressing whole energy of solutions of 3D wave equation, electro- and elastodynamics equations via their asymptotics at large times and distances are obtained. Some examples are considered.
@article{ZNSL_2020_493_a17,
     author = {A. B. Plachenov},
     title = {Acoustic, electromagnetic and elastic wavefield energy expression via its asymptotics at large times and distances},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {269--287},
     year = {2020},
     volume = {493},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a17/}
}
TY  - JOUR
AU  - A. B. Plachenov
TI  - Acoustic, electromagnetic and elastic wavefield energy expression via its asymptotics at large times and distances
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 269
EP  - 287
VL  - 493
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a17/
LA  - ru
ID  - ZNSL_2020_493_a17
ER  - 
%0 Journal Article
%A A. B. Plachenov
%T Acoustic, electromagnetic and elastic wavefield energy expression via its asymptotics at large times and distances
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 269-287
%V 493
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a17/
%G ru
%F ZNSL_2020_493_a17
A. B. Plachenov. Acoustic, electromagnetic and elastic wavefield energy expression via its asymptotics at large times and distances. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 269-287. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a17/

[1] A. S. Blagoveschenskii, “O nekotorykh novykh korrektnykh zadachakh dlya volnovogo uravneniya”, Tr. V Vses. simp. po difraktsii i rasprostraneniyu voln, Nauka, L., 1971, 29–35

[2] H. E. Moses,R. N. Prosser, “Acoustic and electromagnetic bullets: derivation of new exact solutions of the acoustic and Maxwell's equations”, SIAM J. Appl. Math., 50:5 (1990), 1325–1340 | DOI | MR | Zbl

[3] R. M. Arkhipov, M. V. Arkhipov, A. A. Shimko, A. V. Pakhomov, N. N. Rozanov, “Predelno korotkie opticheskie impulsy i ikh generatsiya v rezonansnykh sredakh. (Miniobzor)”, Pisma v ZhETF, 110:1 (2019), 9–20

[4] I. A. Artyukov, A. V. Vinogradov, N. V. Dyachkov, R. M. Feschenko, “Plotnost energii i spektr elektromagnitnykh impulsov s odnim i menee periodami polya”, Kvantovaya elektronika, 20:2 (2020), 187–194

[5] V. I. Smirnov, Kurs vysshei matematiki, v. 2, BKhV-Peterburg, SPb., 2008, 848 pp. | MR

[6] A. P. Kiselev, “Lokalizovannye svetovye volny: paraksialnye i tochnye resheniya volnovogo uravneniya (obzor)”, Opt. i spektr., 102:4 (2007), 661–681

[7] A. N. Vasilev, Klassicheskaya elektrodinamika. Kratkii kurs lektsii, BKhV-Peterburg, SPb., 2010, 288 pp.

[8] V. M. Babich, A. P. Kiselev, Uprugie volny. Vysokochastotnaya teoriya, BKhV-Peterburg, SPb., 2014, 320 pp.

[9] A. P. Kiselev, “Potok energii uprugikh voln”, Zap. nauchn. semin. LOMI, 89, 1979, 120–123

[10] A. Nisbet, “Hertzian electromagnetic potentials and associated gauge transformations”, Proc. of the Royal Soc. of London. Ser. A, 231:1185 (1955), 250–263 | MR | Zbl

[11] I. A. So, A. B. Plachenov, A. P. Kiselev, “Odnonapravlennye odnotsiklovye i subtsiklovye impulsy”, Opt. i spektr., 128:12 (2020), 1865–1867

[12] V. I. Smirnov, Kurs vysshei matematiki, Ch. 2, v. 3, BKhV-Peterburg, SPb, 2010, 817 pp. | MR

[13] J. Lekner, Theory of electromagnetic pulses, Calif. Morgan Claypo, 2018, 100 pp. | MR