Dynamic inverse problem for the one-dimensional system with memory
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 259-268 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the inverse dynamic problem of recoverying the potential in the one-dimensional dynamical system with memory. The Gelfand–Levitan equations are derived for the kernel of the integral operator which is inverse to the control operator of the system. The potential is reconstructed from the solution of these equations.
@article{ZNSL_2020_493_a16,
     author = {A. S. Mikhaylov and V. S. Mikhaylov and A. E. Choque-Rivero},
     title = {Dynamic inverse problem for the one-dimensional system with memory},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {259--268},
     year = {2020},
     volume = {493},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a16/}
}
TY  - JOUR
AU  - A. S. Mikhaylov
AU  - V. S. Mikhaylov
AU  - A. E. Choque-Rivero
TI  - Dynamic inverse problem for the one-dimensional system with memory
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 259
EP  - 268
VL  - 493
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a16/
LA  - ru
ID  - ZNSL_2020_493_a16
ER  - 
%0 Journal Article
%A A. S. Mikhaylov
%A V. S. Mikhaylov
%A A. E. Choque-Rivero
%T Dynamic inverse problem for the one-dimensional system with memory
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 259-268
%V 493
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a16/
%G ru
%F ZNSL_2020_493_a16
A. S. Mikhaylov; V. S. Mikhaylov; A. E. Choque-Rivero. Dynamic inverse problem for the one-dimensional system with memory. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 259-268. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a16/

[1] S. A. Avdonin, S. A. Ivanov, J.-M. Wang, “Inverse problems for the heat equation with memory”, Inverse Problems and Imaging, 13:1 (2019), 31–38 | DOI | MR | Zbl

[2] S. A. Avdonin, V. S. Mikhaylov, “The boundary control approach to inverse spectral theory”, Inverse Problems, 26:4 (2010), 045009 | DOI | MR | Zbl

[3] S. A. Avdonin, L. Pandolfi, “A linear algorithm for the identification of a weakly singular relaxation kernel using two boundary measurements”, J. Inverse Ill-Posed Problems, 26:2 (2018), 299–310 | DOI | MR | Zbl

[4] M. I. Belishev, “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), R1–R67 | DOI | MR | Zbl

[5] M. I. Belishev, “Boundary control and inverse problems: 1-dimensional variant of the BC-method”, J. Math. Sciences, 155:3 (2008), 343–379 | DOI | MR

[6] M. I. Belishev, “Boundary control and tomography of Riemannian manifolds (the BC-method)”, Russian Math. Surveys Volume, 72:4 (2017), 581–644 | DOI | MR | Zbl

[7] M. I. Belishev, V. S. Mikhaylov, “Unified approach to classical equations of inverse problem theory”, J. Inverse and Ill-Posed Problems, 20:4 (2012), 461–488 | DOI | MR | Zbl

[8] M. I. Belishev, V. S. Mikhaylov, “Inverse problem for one-dimensional dynamical Dirac system (BC-method)”, Inverse Problems, 30:12 (2014) | DOI | MR | Zbl

[9] L. Pandolfi, “Dynamical identification of a space varying coefficient in a system with persistent memory”, J. Math. Anal. Appl., 465:1 (2018), 140–158 | DOI | MR | Zbl

[10] L. Pandolfi, Identification of a space varying coefficient of a linear viscoelastic string of Maxwell-Boltzman type, arXiv: 1702.06770