Eigenfunctions of negative spectrum for the Schr\"odinger operator in a halfplane having singular potential on a ray and with Neumann boundary condition
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 232-258
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this work eigenfunctions of essential and discrete spectrum are constructed. Integral representations and asymptotics of the eigenfunctions at far distances are obtained.
			
            
            
            
          
        
      @article{ZNSL_2020_493_a15,
     author = {M. A. Lyalinov},
     title = {Eigenfunctions of negative spectrum for the {Schr\"odinger} operator in a halfplane having singular potential on a ray and with {Neumann} boundary condition},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {232--258},
     publisher = {mathdoc},
     volume = {493},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a15/}
}
                      
                      
                    TY - JOUR AU - M. A. Lyalinov TI - Eigenfunctions of negative spectrum for the Schr\"odinger operator in a halfplane having singular potential on a ray and with Neumann boundary condition JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 232 EP - 258 VL - 493 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a15/ LA - ru ID - ZNSL_2020_493_a15 ER -
%0 Journal Article %A M. A. Lyalinov %T Eigenfunctions of negative spectrum for the Schr\"odinger operator in a halfplane having singular potential on a ray and with Neumann boundary condition %J Zapiski Nauchnykh Seminarov POMI %D 2020 %P 232-258 %V 493 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a15/ %G ru %F ZNSL_2020_493_a15
M. A. Lyalinov. Eigenfunctions of negative spectrum for the Schr\"odinger operator in a halfplane having singular potential on a ray and with Neumann boundary condition. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 232-258. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a15/