Eigenfunctions of negative spectrum for the Schr\"odinger operator in a halfplane having singular potential on a ray and with Neumann boundary condition
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 232-258

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work eigenfunctions of essential and discrete spectrum are constructed. Integral representations and asymptotics of the eigenfunctions at far distances are obtained.
@article{ZNSL_2020_493_a15,
     author = {M. A. Lyalinov},
     title = {Eigenfunctions of negative spectrum for the {Schr\"odinger} operator in a halfplane having singular potential on a ray and with {Neumann} boundary condition},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {232--258},
     publisher = {mathdoc},
     volume = {493},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a15/}
}
TY  - JOUR
AU  - M. A. Lyalinov
TI  - Eigenfunctions of negative spectrum for the Schr\"odinger operator in a halfplane having singular potential on a ray and with Neumann boundary condition
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 232
EP  - 258
VL  - 493
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a15/
LA  - ru
ID  - ZNSL_2020_493_a15
ER  - 
%0 Journal Article
%A M. A. Lyalinov
%T Eigenfunctions of negative spectrum for the Schr\"odinger operator in a halfplane having singular potential on a ray and with Neumann boundary condition
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 232-258
%V 493
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a15/
%G ru
%F ZNSL_2020_493_a15
M. A. Lyalinov. Eigenfunctions of negative spectrum for the Schr\"odinger operator in a halfplane having singular potential on a ray and with Neumann boundary condition. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 232-258. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a15/