About heat wave in a semi-infinite rod with a boundary condition periodically changing in time
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 218-231 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It has been obtained and investigated an exact analytical solution of the problem of a periodic heat wave in a semi-infinite rod with a time-varying boundary condition at its end. Тhe end of the rod is maintained at a given temperature (inhomogeneous Dirichlet condition) during the first half of the time period, the end of the rod is heat insulated (homogeneous Neumann condition) in the second half of the time period. The problem is solved by the Wiener-Hopf method. Numerical calculations of temperature distribution are given for temperature wave.
@article{ZNSL_2020_493_a14,
     author = {V. D. Lukyanov},
     title = {About heat wave in a semi-infinite rod with a boundary condition periodically changing in time},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {218--231},
     year = {2020},
     volume = {493},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a14/}
}
TY  - JOUR
AU  - V. D. Lukyanov
TI  - About heat wave in a semi-infinite rod with a boundary condition periodically changing in time
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 218
EP  - 231
VL  - 493
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a14/
LA  - ru
ID  - ZNSL_2020_493_a14
ER  - 
%0 Journal Article
%A V. D. Lukyanov
%T About heat wave in a semi-infinite rod with a boundary condition periodically changing in time
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 218-231
%V 493
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a14/
%G ru
%F ZNSL_2020_493_a14
V. D. Lukyanov. About heat wave in a semi-infinite rod with a boundary condition periodically changing in time. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 218-231. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a14/

[1] V. M. Babich i dr., Lineinye uravneniya matematicheskoi fiziki, Nauka, SMB, M., 1964, 368 pp.

[2] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1972, 736 pp. | MR

[3] N. Viner, R. Peli, Preobrazovanie Fure v kompleksnoi oblasti, Nauka, M., 1964, 268 pp.

[4] N. I. Muskheleshvili, Singulyarnye integralnye uravneniya, Nauka, M., 1968, 512 pp.

[5] F. D. Gakhov, Kraevye zadachi, Nauka, M., 1977, 640 pp.

[6] N. P. Vekua, Sistemy singulyarnykh integralnykh uravnenii i nekotorye granichnye zadachi, Nauka, M., 1970, 380 pp. | MR

[7] B. Nobl, Primenenie metoda Vinera-Khopfa dlya resheniya differentsialnykh uravnenii v chastnykh proizvodnykh, Izd-vo inostr. lit., M., 1962, 279 pp.

[8] R. Mittra, S. Li, Analiticheskie metody teorii volnovodov, Mir, M., 1974, 327 pp.

[9] E. Titchmarsh, Teoriya funktsii, Nauka, M., 1980, 464 pp. | MR

[10] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnoi peremennogo, Nauka, M., 1965, 716 pp.

[11] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln. Metod etalonnykh zadach, Nauka, M., 1972, 456 pp.

[12] V. M. Babich, N. S. Grigoreva, Ortorgonalnye razlozheniya i metod Fure, Izd-vo LGU, L., 1983, 240 pp.

[13] V. M. Babich, M. A. Lyalinov, V. E. Grikurov, Metod Zommerfelda-Malyuzhintsa v zadachakh difraktsii, VVM, SPb, 2004, 103 pp.