@article{ZNSL_2020_493_a14,
author = {V. D. Lukyanov},
title = {About heat wave in a semi-infinite rod with a boundary condition periodically changing in time},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {218--231},
year = {2020},
volume = {493},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a14/}
}
V. D. Lukyanov. About heat wave in a semi-infinite rod with a boundary condition periodically changing in time. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 218-231. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a14/
[1] V. M. Babich i dr., Lineinye uravneniya matematicheskoi fiziki, Nauka, SMB, M., 1964, 368 pp.
[2] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1972, 736 pp. | MR
[3] N. Viner, R. Peli, Preobrazovanie Fure v kompleksnoi oblasti, Nauka, M., 1964, 268 pp.
[4] N. I. Muskheleshvili, Singulyarnye integralnye uravneniya, Nauka, M., 1968, 512 pp.
[5] F. D. Gakhov, Kraevye zadachi, Nauka, M., 1977, 640 pp.
[6] N. P. Vekua, Sistemy singulyarnykh integralnykh uravnenii i nekotorye granichnye zadachi, Nauka, M., 1970, 380 pp. | MR
[7] B. Nobl, Primenenie metoda Vinera-Khopfa dlya resheniya differentsialnykh uravnenii v chastnykh proizvodnykh, Izd-vo inostr. lit., M., 1962, 279 pp.
[8] R. Mittra, S. Li, Analiticheskie metody teorii volnovodov, Mir, M., 1974, 327 pp.
[9] E. Titchmarsh, Teoriya funktsii, Nauka, M., 1980, 464 pp. | MR
[10] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnoi peremennogo, Nauka, M., 1965, 716 pp.
[11] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln. Metod etalonnykh zadach, Nauka, M., 1972, 456 pp.
[12] V. M. Babich, N. S. Grigoreva, Ortorgonalnye razlozheniya i metod Fure, Izd-vo LGU, L., 1983, 240 pp.
[13] V. M. Babich, M. A. Lyalinov, V. E. Grikurov, Metod Zommerfelda-Malyuzhintsa v zadachakh difraktsii, VVM, SPb, 2004, 103 pp.