On a cylinder floating freely in oblique waves
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 200-217 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The coupled motion is investigated for a mechanical system consisting of water and a body freely floating in it. Water occupies either a half-space or a layer of constant depth into which an infinitely long surface-piercing cylinder is immersed, thus allowing us to study the so-called oblique waves. Under the assumption that the motion is of small amplitude near equilibrium and describes time-harmonic oscillations, the phenomenon's linear setting reduces to a spectral problem with the radian frequency as the spectral parameter. If the radiation condition holds, then the total energy is finite and the equipartition of kinetic and potential energy holds for the whole system. On this basis, it is proved that no wave modes are trapped under some restrictions on their frequencies; in the case when a symmetric cylinder has two immersed parts restrictions are imposed on the type of mode as well.
@article{ZNSL_2020_493_a13,
     author = {N. G. Kuznetsov},
     title = {On a cylinder floating freely in oblique waves},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {200--217},
     year = {2020},
     volume = {493},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a13/}
}
TY  - JOUR
AU  - N. G. Kuznetsov
TI  - On a cylinder floating freely in oblique waves
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 200
EP  - 217
VL  - 493
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a13/
LA  - ru
ID  - ZNSL_2020_493_a13
ER  - 
%0 Journal Article
%A N. G. Kuznetsov
%T On a cylinder floating freely in oblique waves
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 200-217
%V 493
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a13/
%G ru
%F ZNSL_2020_493_a13
N. G. Kuznetsov. On a cylinder floating freely in oblique waves. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 200-217. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a13/

[1] N. Kuznetsov, “On the problem of time-harmonic water waves in the presence of a freely-floating structure”, St. Petersburg Math. J., 22 (2011), 985–995 | DOI | MR | Zbl

[2] F. John, “On the motion of floating bodies, I”, Comm. Pure Appl. Math., 2 (1949), 13–57 | DOI | MR | Zbl

[3] F. Ursell, “Some unsolved and unfinished problems in the theory of waves”, Wave Asymptotics, eds. P.A. Martin, G.R. Wickham, Cambridge University Press, Cambridge, 1992, 220–244 | MR | Zbl

[4] D. Kolton, R. Kress, Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987

[5] N. Kuznetsov, O. Motygin, “On the coupled time-harmonic motion of water and a body freely floating in it”, J. Fluid Mech., 679 (2011), 616–627 | DOI | MR | Zbl

[6] N. Kuznetsov, O. Motygin, “On the coupled time-harmonic motion of deep water and a freely floating body: trapped modes and uniqueness theorems”, J. Fluid Mech., 703 (2012), 142–162 | DOI | MR | Zbl

[7] N. Kuznetsov, O. Motygin, “Freely floating structures trapping time-harmonic water waves”, Quart. J. Mech. Appl. Math., 68 (2015), 173–193 | DOI | MR | Zbl

[8] F. John, “On the motion of floating bodies, II”, Comm. Pure Appl. Math., 3 (1950), 45–101 | DOI | MR

[9] N. Kuznetsov, V. Maz'ya, B. Vainberg, Linear Water Waves: A Mathematical Approach, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[10] M. McIver, “An example of non-uniqueness in the two-dimensional linear water-wave problem”, J. Fluid Mech., 315 (1996), 257–266 | DOI | MR | Zbl

[11] N. Kuznetsov, R. Porter, D. V. Evans, M. J. Simon, “Uniqueness and trapped modes for surface-piercing cylinders in oblique waves”, J. Fluid Mech., 365 (1998), 351–368 | DOI | MR | Zbl

[12] N. Kuznetsov, “Uniqueness in the problem of an obstacle in oblique waves”, C. R. Mecanique, 331 (2003), 183–188 | DOI | Zbl

[13] N. Kuznetsov, O. Motygin, “On the coupled time-harmonic motion of water and a body freely floating in it”, J. Fluid Mech., 679 (2011), 616–627 | DOI | MR | Zbl