On a cylinder floating freely in oblique waves
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 200-217

Voir la notice de l'article provenant de la source Math-Net.Ru

The coupled motion is investigated for a mechanical system consisting of water and a body freely floating in it. Water occupies either a half-space or a layer of constant depth into which an infinitely long surface-piercing cylinder is immersed, thus allowing us to study the so-called oblique waves. Under the assumption that the motion is of small amplitude near equilibrium and describes time-harmonic oscillations, the phenomenon's linear setting reduces to a spectral problem with the radian frequency as the spectral parameter. If the radiation condition holds, then the total energy is finite and the equipartition of kinetic and potential energy holds for the whole system. On this basis, it is proved that no wave modes are trapped under some restrictions on their frequencies; in the case when a symmetric cylinder has two immersed parts restrictions are imposed on the type of mode as well.
@article{ZNSL_2020_493_a13,
     author = {N. G. Kuznetsov},
     title = {On a cylinder floating freely in oblique waves},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {200--217},
     publisher = {mathdoc},
     volume = {493},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a13/}
}
TY  - JOUR
AU  - N. G. Kuznetsov
TI  - On a cylinder floating freely in oblique waves
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 200
EP  - 217
VL  - 493
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a13/
LA  - ru
ID  - ZNSL_2020_493_a13
ER  - 
%0 Journal Article
%A N. G. Kuznetsov
%T On a cylinder floating freely in oblique waves
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 200-217
%V 493
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a13/
%G ru
%F ZNSL_2020_493_a13
N. G. Kuznetsov. On a cylinder floating freely in oblique waves. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 200-217. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a13/