Euler integral symmetries and the asymptotic of the monodromy for the Heun equation
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 186-199
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Euler integral transform connects monodromy matrices of the Heun equation with different sets of parameters. In this paper, this fact is used to calculate the asymptotic behavior of the monodromy of the Heun confluent equation in the case of the presence of a “combined” singularity.
			
            
            
            
          
        
      @article{ZNSL_2020_493_a12,
     author = {A. Ya. Kazakov},
     title = {Euler integral symmetries and the asymptotic of the monodromy for the {Heun} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {186--199},
     publisher = {mathdoc},
     volume = {493},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a12/}
}
                      
                      
                    A. Ya. Kazakov. Euler integral symmetries and the asymptotic of the monodromy for the Heun equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 186-199. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a12/