Euler integral symmetries and the asymptotic of the monodromy for the Heun equation
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 186-199

Voir la notice de l'article provenant de la source Math-Net.Ru

Euler integral transform connects monodromy matrices of the Heun equation with different sets of parameters. In this paper, this fact is used to calculate the asymptotic behavior of the monodromy of the Heun confluent equation in the case of the presence of a “combined” singularity.
@article{ZNSL_2020_493_a12,
     author = {A. Ya. Kazakov},
     title = {Euler integral symmetries and the asymptotic of the monodromy for the {Heun} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {186--199},
     publisher = {mathdoc},
     volume = {493},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a12/}
}
TY  - JOUR
AU  - A. Ya. Kazakov
TI  - Euler integral symmetries and the asymptotic of the monodromy for the Heun equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 186
EP  - 199
VL  - 493
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a12/
LA  - ru
ID  - ZNSL_2020_493_a12
ER  - 
%0 Journal Article
%A A. Ya. Kazakov
%T Euler integral symmetries and the asymptotic of the monodromy for the Heun equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 186-199
%V 493
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a12/
%G ru
%F ZNSL_2020_493_a12
A. Ya. Kazakov. Euler integral symmetries and the asymptotic of the monodromy for the Heun equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 186-199. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a12/