Short-wavelength diffraction by a contours with non-smooth curvature. Boundary layer approach
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 169-185 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the short-wavelength diffraction by a contour with non-smooth curvature, whose $j$-th derivative ($j=1, 2, \ldots$) has a discontinuity at a point. Asymptotic formulas describing the effect of non-smoothness of curvature on the wavefield are constructed in a framework of rigorous boundary layer method. Аn expression for cylindrical diffracted wave is derived. The wavefield in the vicinity of the limit ray at small distances from the contour is described in terms of the parabolic cylinder functions.
@article{ZNSL_2020_493_a11,
     author = {E. A. Zlobina},
     title = {Short-wavelength diffraction by a contours with non-smooth curvature. {Boundary} layer approach},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {169--185},
     year = {2020},
     volume = {493},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a11/}
}
TY  - JOUR
AU  - E. A. Zlobina
TI  - Short-wavelength diffraction by a contours with non-smooth curvature. Boundary layer approach
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 169
EP  - 185
VL  - 493
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a11/
LA  - ru
ID  - ZNSL_2020_493_a11
ER  - 
%0 Journal Article
%A E. A. Zlobina
%T Short-wavelength diffraction by a contours with non-smooth curvature. Boundary layer approach
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 169-185
%V 493
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a11/
%G ru
%F ZNSL_2020_493_a11
E. A. Zlobina. Short-wavelength diffraction by a contours with non-smooth curvature. Boundary layer approach. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 169-185. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a11/

[1] V. M. Babich, N. Ya. Kirpichnikova, Metod pogranichnogo sloya v zadachakh difraktsii, Izdatelstvo LGU, L., 1974 | MR

[2] V. H. Weston, “The effect of a discontinuity in curvature in high-frequency scattering”, IRE Trans. AP, 10 (1962), 775–780

[3] V. H. Weston, “Effect of a discontinuity of curvature in high-frequency scattering. Part II”, IEEE Trans. AP, 13 (1965), 611–613 | DOI

[4] A. V. Popov, “Obratnoe rasseyanie ot linii razryva krivizny”, Trudy V Vses. Simpoz. Difr. Raspr. Voln, Nauka, L., 1971, 171–175

[5] T. B. A. Senior, “The diffraction matrix for a discontinuity in curvature”, IEEE Trans. AP, 20:3 (1972), 326–333 | DOI

[6] D. Bouche, “Courant sur un obstacle cylindrique parfaitement conducteur présentant une discontinuité de courbure”, Ann. Télécommunic., 47 (1992), 391–399

[7] N. Ya. Kirpichnikova, V. B. Filippov, A. S. Kirpichnikova, “Difraktsiya voln soskalzyvaniya ot linii skachka krivizny. (Akusticheskaya trekhmernaya sreda)”, Zap. nauchn. sem. POMI, 257, 1999, 75–92 | Zbl

[8] G. L. James, Geometrical theory of diffraction for electromagnetic waves, IEEE Electromagnetic Series, 1, 1986 | MR

[9] A. F. Filippov, “Otrazhenie ot granitsy, sostoyaschei iz dug razlichnoi krivizny”, Prikl. Mat. Mekh. (PMM), 34 (1970), 1076–1084 | Zbl

[10] L. Kaminetzky, J. B. Keller, “Diffraction coefficients for higher order edges and vertices”, SIAM J. Appl. Math., 22:1 (1972), 109–134 | DOI | MR | Zbl

[11] Z. M. Rogoff, A. P. Kiselev, “Diffraction at jump of curvature on an impedance boundary”, Wave Motion, 33:2 (2001), 183–208 | DOI | Zbl

[12] A. Michaeli, “Diffraction by a discontinuity in curvature including the effect of creeping wave”, IEEE Trans. AP, 38:6 (1990), 929–931 | DOI

[13] V. A. Borovikov, B. E. Kinber, Geometricheskaya teoriya difraktsii, Svyaz, M., 1978 | MR

[14] E. A. Zlobina, A. P. Kiselev, “Boundary-layer approach to high-frequency diffraction by a jump of curvature”, Wave Motion, 96 (1025), 102571 | DOI | MR

[15] E. A. Zlobina, A. P. Kiselev, “Difraktsiya korotkikh voln na konture s gelderovskoi singulyarnostyu krivizny”, Algebra i Analiz, 33:2 (2021)

[16] N. V. Tsepelev, “O nekotorykh spetsialnykh resheniyakh uravneniya Gelmgoltsa”, Zap. nauchn. sem. LOMI, 51, 1975, 197–202 | Zbl

[17] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, v. 1, GIFML, M., 1959

[18] V. I. Smirnov, Kurs vysshei matematiki, v. 2, Nauka, M., 1974 | MR

[19] V. M. Babich, A. P. Kiselev, Uprugie volny. Vysokochastotnaya teoriya, BKhV, SPb, 2014

[20] L. M. Brekhovskikh, O. A. Godin, Akustika sloistykh sred, Nauka, M., 1989

[21] A. Erdeii, Asimptoticheskie razlozheniya, GIFML, M., 1962

[22] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979