On the Cauchy problem for the wave equation in a two-dimensional domain with data on the boundary
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 154-168
Voir la notice de l'article provenant de la source Math-Net.Ru
The subject of the paper is the Cauchy problem for the wave equation in a space-time cylinder $\Omega\times{\mathbb R}$, $\Omega\subset{\mathbb R}^2$, with data on the surface $\partial\Omega\times I$, where $I$ is a finite time interval. The algorithm for solving the Cauchy problem with data on $S\times I$, $S\subset\partial\Omega$, was obtained previously. Here we adapt this algorithm to the special case $S=\partial\Omega$ and show that in this situation, the solution is determined with higher stability in comparison with the case $S\subsetneqq\partial\Omega$.
@article{ZNSL_2020_493_a10,
author = {M. N. Demchenko},
title = {On the {Cauchy} problem for the wave equation in a two-dimensional domain with data on the boundary},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {154--168},
publisher = {mathdoc},
volume = {493},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a10/}
}
TY - JOUR AU - M. N. Demchenko TI - On the Cauchy problem for the wave equation in a two-dimensional domain with data on the boundary JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 154 EP - 168 VL - 493 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a10/ LA - ru ID - ZNSL_2020_493_a10 ER -
M. N. Demchenko. On the Cauchy problem for the wave equation in a two-dimensional domain with data on the boundary. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 154-168. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a10/