On the Cauchy problem for the wave equation in a two-dimensional domain with data on the boundary
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 154-168

Voir la notice de l'article provenant de la source Math-Net.Ru

The subject of the paper is the Cauchy problem for the wave equation in a space-time cylinder $\Omega\times{\mathbb R}$, $\Omega\subset{\mathbb R}^2$, with data on the surface $\partial\Omega\times I$, where $I$ is a finite time interval. The algorithm for solving the Cauchy problem with data on $S\times I$, $S\subset\partial\Omega$, was obtained previously. Here we adapt this algorithm to the special case $S=\partial\Omega$ and show that in this situation, the solution is determined with higher stability in comparison with the case $S\subsetneqq\partial\Omega$.
@article{ZNSL_2020_493_a10,
     author = {M. N. Demchenko},
     title = {On the {Cauchy} problem for the wave equation in a two-dimensional domain with data on the boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {154--168},
     publisher = {mathdoc},
     volume = {493},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a10/}
}
TY  - JOUR
AU  - M. N. Demchenko
TI  - On the Cauchy problem for the wave equation in a two-dimensional domain with data on the boundary
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 154
EP  - 168
VL  - 493
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a10/
LA  - ru
ID  - ZNSL_2020_493_a10
ER  - 
%0 Journal Article
%A M. N. Demchenko
%T On the Cauchy problem for the wave equation in a two-dimensional domain with data on the boundary
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 154-168
%V 493
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a10/
%G ru
%F ZNSL_2020_493_a10
M. N. Demchenko. On the Cauchy problem for the wave equation in a two-dimensional domain with data on the boundary. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 154-168. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a10/