On the Cauchy problem for the wave equation in a two-dimensional domain with data on the boundary
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 154-168 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The subject of the paper is the Cauchy problem for the wave equation in a space-time cylinder $\Omega\times{\mathbb R}$, $\Omega\subset{\mathbb R}^2$, with data on the surface $\partial\Omega\times I$, where $I$ is a finite time interval. The algorithm for solving the Cauchy problem with data on $S\times I$, $S\subset\partial\Omega$, was obtained previously. Here we adapt this algorithm to the special case $S=\partial\Omega$ and show that in this situation, the solution is determined with higher stability in comparison with the case $S\subsetneqq\partial\Omega$.
@article{ZNSL_2020_493_a10,
     author = {M. N. Demchenko},
     title = {On the {Cauchy} problem for the wave equation in a two-dimensional domain with data on the boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {154--168},
     year = {2020},
     volume = {493},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a10/}
}
TY  - JOUR
AU  - M. N. Demchenko
TI  - On the Cauchy problem for the wave equation in a two-dimensional domain with data on the boundary
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 154
EP  - 168
VL  - 493
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a10/
LA  - ru
ID  - ZNSL_2020_493_a10
ER  - 
%0 Journal Article
%A M. N. Demchenko
%T On the Cauchy problem for the wave equation in a two-dimensional domain with data on the boundary
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 154-168
%V 493
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a10/
%G ru
%F ZNSL_2020_493_a10
M. N. Demchenko. On the Cauchy problem for the wave equation in a two-dimensional domain with data on the boundary. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 50, Tome 493 (2020), pp. 154-168. http://geodesic.mathdoc.fr/item/ZNSL_2020_493_a10/

[1] M. M. Lavrentev, V. G. Romanov, S. P. Shishatskii, Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR

[2] D. Tataru, “Unique Continuation for Solutions to PDE's; Between Hörmander's Theorem and Holmgren's Theorem”, Communications in Partial Differential Equations, 20:5–6 (1995), 855–884 | MR | Zbl

[3] V. Isakov, Inverse Problems for Partial Differential Equations, Appl. Math. Scie., 127, 2nd Edition, Springer, 2006 | MR | Zbl

[4] R. Kurant, D. Gilbert, Metody matematicheskoi fiziki, v. II, Uravneniya s chastnymi proizvodnymi, Mir, M., 1964

[5] A. S. Blagoveshchensky, F. N. Podymaka, “On a Cauchy problem for the wave equation with data on a time-like hyperplane”, Proceedings of the International Conference Days on Diffraction, 2016, 31–34

[6] M. N. Demchenko, “Reconstruction of solution to the wave equation from Cauchy data on the boundary”, Proceedings of the International Conference Days on Diffraction, 2018, 66–70

[7] M. N. Demchenko, “O zadache Koshi dlya volnovogo uravneniya s dannymi na granitse”, Zap. nauchn. semin. POMI, 471, 2018, 99–112

[8] E. T. Quinto, A. Rieder, T. Schuster, “Local inversion of the sonar transform regularized by the approximate inverse”, Inverse Problems, 27:3 (2011), 035006 | DOI | MR | Zbl

[9] V. M. Babich, V. S. Buldyrev, I. A. Molotkov, Prostranstvenno-vremennoi luchevoi metod: lineinye i nelineinye volny, Izd-vo LGU, Leningrad, 1985 | MR

[10] V. M. Babich, A. P. Kiselev, Uprugie volny. Vysokochastotnaya teoriya, BKhV-Peterburg, 2014

[11] S. I. Kabanikhin, D. B. Nurseitov, M. A. Shishlenin, B. B. Sholpanbaev, “Inverse problems for the ground penetrating radar”, J. Inverse Ill-Posed Probl., 21 (2013), 885–892 | MR | Zbl

[12] M. I. Belishev, “Recent progress in the boundary control method”, Inverse problems, 23:5 (2007), R1–R67 | DOI | MR | Zbl

[13] D. Finch, Sarah K. Patch, Rakesh, “Determining a Function from Its Mean Values Over a Family of Spheres”, SIAM J. Math. Anal., 35:5 (2004), 1213–1240 | DOI | MR | Zbl

[14] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[15] L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, AMS, 1998 | MR | Zbl