Convergence sets of multidimensional local fields
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 492 (2020), pp. 125-133

Voir la notice de l'article provenant de la source Math-Net.Ru

We study subsets of multidimensional local fields that have the property that any power series with coefficients from this subset converges when substituting an element of the maximum ideal for a variable.
@article{ZNSL_2020_492_a8,
     author = {A. I. Madunts},
     title = {Convergence sets of multidimensional local fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {125--133},
     publisher = {mathdoc},
     volume = {492},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a8/}
}
TY  - JOUR
AU  - A. I. Madunts
TI  - Convergence sets of multidimensional local fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 125
EP  - 133
VL  - 492
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a8/
LA  - ru
ID  - ZNSL_2020_492_a8
ER  - 
%0 Journal Article
%A A. I. Madunts
%T Convergence sets of multidimensional local fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 125-133
%V 492
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a8/
%G ru
%F ZNSL_2020_492_a8
A. I. Madunts. Convergence sets of multidimensional local fields. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 492 (2020), pp. 125-133. http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a8/