Convergence sets of multidimensional local fields
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 492 (2020), pp. 125-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study subsets of multidimensional local fields that have the property that any power series with coefficients from this subset converges when substituting an element of the maximum ideal for a variable.
@article{ZNSL_2020_492_a8,
     author = {A. I. Madunts},
     title = {Convergence sets of multidimensional local fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {125--133},
     year = {2020},
     volume = {492},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a8/}
}
TY  - JOUR
AU  - A. I. Madunts
TI  - Convergence sets of multidimensional local fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 125
EP  - 133
VL  - 492
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a8/
LA  - ru
ID  - ZNSL_2020_492_a8
ER  - 
%0 Journal Article
%A A. I. Madunts
%T Convergence sets of multidimensional local fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 125-133
%V 492
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a8/
%G ru
%F ZNSL_2020_492_a8
A. I. Madunts. Convergence sets of multidimensional local fields. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 492 (2020), pp. 125-133. http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a8/

[1] I. B. Zhukov, “Strukturnaya teorema dlya polnykh polei”, Trudy Sankt-Peterb. mat. obsch., 3 (1994), 215–234

[2] I. B. Zhukov, A. I. Madunts, “Mnogomernye polnye polya: topologiya i drugie osnovnye ponyatiya”, Trudy Sankt-Peterb. mat. obsch., 3 (1994), 4–46

[3] I. B. Zhukov, A. I. Madunts, “Additivnye i multiplikativnye razlozheniya v mnogomernykh lokalnykh polyakh”, Zap. nauchn. sem. POMI, 272, 2000, 186–196 | Zbl

[4] A. I. Madunts, “O skhodimosti ryadov nad lokalnymi polyami”, Trudy Sankt-Peterburgskogo mat. obsch., 3 (1994), 283–320

[5] A. I. Madunts, Skhodimost posledovatelnostei i ryadov v mnogomernykh polnykh polyakh, Avtoreferat dissertatsii na soiskanie uchenoi stepeni kandidata fiziko-matematicheskikh nauk, Sankt-Peterburg, 1995, 14 pp.

[6] A. I. Madunts, “Formalnye gruppy Lyubina–Teita nad koltsom tselykh mnogomernogo lokalnogo polya”, Zap. nauchn. sem. POMI, 281, 2001, 221–226 | Zbl

[7] A. N. Parshin, “Abelevy nakrytiya arifmeticheskikh skhem”, Doklad AN SSSR. Ser. mat., 243 (1978), 855–858 | Zbl

[8] A. N. Parshin, “K arifmetike dvumernykh skhem. 1. Raspredeleniya i vychety”, Izv. AN SSSR. Ser. mat., 40 (1976), 736–773 | Zbl

[9] A. N. Parshin, “Lokalnaya teoriya polei klassov”, Trudy MIAN, 165, 1984, 143–170 | Zbl

[10] I. R. Shafarevich, “Obschii zakon vzaimnosti”, Matem. sb., 26(68):1 (1950), 113–146 | Zbl

[11] I. B. Fesenko, S. V. Vostokov, Local fields and their extensions, Amer. Math. Soc., 1993, 283 pp. | MR | Zbl

[12] A. I. Madunts, “Classification of generalized formal Lubin–Tate groups over multidimensional local fields”, J. Math. Sci. (United States), 234 (2018), 175–179 | DOI | MR | Zbl