@article{ZNSL_2020_492_a8,
author = {A. I. Madunts},
title = {Convergence sets of multidimensional local fields},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {125--133},
year = {2020},
volume = {492},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a8/}
}
A. I. Madunts. Convergence sets of multidimensional local fields. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 492 (2020), pp. 125-133. http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a8/
[1] I. B. Zhukov, “Strukturnaya teorema dlya polnykh polei”, Trudy Sankt-Peterb. mat. obsch., 3 (1994), 215–234
[2] I. B. Zhukov, A. I. Madunts, “Mnogomernye polnye polya: topologiya i drugie osnovnye ponyatiya”, Trudy Sankt-Peterb. mat. obsch., 3 (1994), 4–46
[3] I. B. Zhukov, A. I. Madunts, “Additivnye i multiplikativnye razlozheniya v mnogomernykh lokalnykh polyakh”, Zap. nauchn. sem. POMI, 272, 2000, 186–196 | Zbl
[4] A. I. Madunts, “O skhodimosti ryadov nad lokalnymi polyami”, Trudy Sankt-Peterburgskogo mat. obsch., 3 (1994), 283–320
[5] A. I. Madunts, Skhodimost posledovatelnostei i ryadov v mnogomernykh polnykh polyakh, Avtoreferat dissertatsii na soiskanie uchenoi stepeni kandidata fiziko-matematicheskikh nauk, Sankt-Peterburg, 1995, 14 pp.
[6] A. I. Madunts, “Formalnye gruppy Lyubina–Teita nad koltsom tselykh mnogomernogo lokalnogo polya”, Zap. nauchn. sem. POMI, 281, 2001, 221–226 | Zbl
[7] A. N. Parshin, “Abelevy nakrytiya arifmeticheskikh skhem”, Doklad AN SSSR. Ser. mat., 243 (1978), 855–858 | Zbl
[8] A. N. Parshin, “K arifmetike dvumernykh skhem. 1. Raspredeleniya i vychety”, Izv. AN SSSR. Ser. mat., 40 (1976), 736–773 | Zbl
[9] A. N. Parshin, “Lokalnaya teoriya polei klassov”, Trudy MIAN, 165, 1984, 143–170 | Zbl
[10] I. R. Shafarevich, “Obschii zakon vzaimnosti”, Matem. sb., 26(68):1 (1950), 113–146 | Zbl
[11] I. B. Fesenko, S. V. Vostokov, Local fields and their extensions, Amer. Math. Soc., 1993, 283 pp. | MR | Zbl
[12] A. I. Madunts, “Classification of generalized formal Lubin–Tate groups over multidimensional local fields”, J. Math. Sci. (United States), 234 (2018), 175–179 | DOI | MR | Zbl