On the image of a word map with constants of a simple algebraic group II
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 492 (2020), pp. 75-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper is a continuation of the investigations of images of word maps with constants $\widetilde{w}_\Sigma: G^n \rightarrow G$ on a simple algebraic group $G$ started in the work of F. Gnutov and N. Gordeev, On the image of a word map with constants of a simple algebraic group, Zap. Nauchn. Semin. POMI, 478 (2019), 78–99. In this paper we prove that for adjoint simple algebraic groups of the type $B_l, C_l, F_4, G_2$ over a field of characteristic $\ne 2, 3$ the map $\pi\circ \widetilde{w}$, where $\widetilde{w}_\Sigma$ is word map without small constants and $\pi: G\rightarrow T/W$ is a map of factorization, is a constant map if and only if $w_\Sigma=vgv^{-1}$, where $g \in G$ and $v$ is a word with constants. Also, we give estimates for dimensions of images of some types of word maps with constants on simple algebraic groups.
@article{ZNSL_2020_492_a6,
     author = {F. A. Gnutov},
     title = {On the image of a word map with constants of a simple algebraic {group~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {75--93},
     year = {2020},
     volume = {492},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a6/}
}
TY  - JOUR
AU  - F. A. Gnutov
TI  - On the image of a word map with constants of a simple algebraic group II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 75
EP  - 93
VL  - 492
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a6/
LA  - ru
ID  - ZNSL_2020_492_a6
ER  - 
%0 Journal Article
%A F. A. Gnutov
%T On the image of a word map with constants of a simple algebraic group II
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 75-93
%V 492
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a6/
%G ru
%F ZNSL_2020_492_a6
F. A. Gnutov. On the image of a word map with constants of a simple algebraic group II. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 492 (2020), pp. 75-93. http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a6/

[1] A. Borel, “On free subgroups of semisimple groups”, Enseign. Math., 29 (1983), 151–164 | MR | Zbl

[2] A. Borel, Linear Algebraic groups, Graduate texts in mathematics, 126, 2nd enl.ed., Springer-Verlag New York Inc., 1991 | DOI | MR | Zbl

[3] R. W. Carter, Simple groups of Lie type, Pure and Applied Mathematics, 28, John Wiley Sons, London–New York–Sydney, 1972 | MR

[4] R. W. Carter, Finite Groups of Lie Type. Conjugacy Classes and Complex Characters, A Wiley - Interscience Publication, John Wiley Sons, Chichester–New York–Bribane–Toronto–Singapure, 1985 | MR | Zbl

[5] N. L. Gordeev, “Freedom in conjugacy classes of simple algebraic groups and identities with constants”, Algebra i Analiz, 9:4 (1997), 63–78 | MR | Zbl

[6] F. A. Gnutov, N. L. Gordeev, “Ob obraze verbalnogo otobrazheniya s konstantami prostoi algebraicheskoi gruppy”, Zap. nauchn. semin. POMI, 478, 2019, 7–99

[7] N. Gordeev, B. Kunyavskii, E. Plotkin, “Word maps, word maps with constants and representation varieties of one-relator groups”, J. Algebra, 500 (2018), 390–424 | DOI | MR | Zbl

[8] T. A. Springer, R. Steinberg, “Conjugacy classes”, Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes Math., 131, Springer-Verlag, Berlin–Heidelberg–New York, 1970, 167–266 | DOI | MR

[9] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975