A note on generalized semicommutative rings
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 492 (2020), pp. 69-74

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we extend and generalize some results of the paper of D. Roy and T. Subedi (Vestnik of St. Petersburg State University. Series 1. Mathematics. Mechanics. Astronomy, vol. 7 (65), issue 1, 2020), concerning generalized semicommutative subrings of matrix rings.
@article{ZNSL_2020_492_a5,
     author = {A. I. Generalov and I. M. Zilberbord},
     title = {A note on generalized semicommutative rings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {69--74},
     publisher = {mathdoc},
     volume = {492},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a5/}
}
TY  - JOUR
AU  - A. I. Generalov
AU  - I. M. Zilberbord
TI  - A note on generalized semicommutative rings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 69
EP  - 74
VL  - 492
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a5/
LA  - ru
ID  - ZNSL_2020_492_a5
ER  - 
%0 Journal Article
%A A. I. Generalov
%A I. M. Zilberbord
%T A note on generalized semicommutative rings
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 69-74
%V 492
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a5/
%G ru
%F ZNSL_2020_492_a5
A. I. Generalov; I. M. Zilberbord. A note on generalized semicommutative rings. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 492 (2020), pp. 69-74. http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a5/