A note on generalized semicommutative rings
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 492 (2020), pp. 69-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this note we extend and generalize some results of the paper of D. Roy and T. Subedi (Vestnik of St. Petersburg State University. Series 1. Mathematics. Mechanics. Astronomy, vol. 7 (65), issue 1, 2020), concerning generalized semicommutative subrings of matrix rings.
@article{ZNSL_2020_492_a5,
     author = {A. I. Generalov and I. M. Zilberbord},
     title = {A note on generalized semicommutative rings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {69--74},
     year = {2020},
     volume = {492},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a5/}
}
TY  - JOUR
AU  - A. I. Generalov
AU  - I. M. Zilberbord
TI  - A note on generalized semicommutative rings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 69
EP  - 74
VL  - 492
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a5/
LA  - ru
ID  - ZNSL_2020_492_a5
ER  - 
%0 Journal Article
%A A. I. Generalov
%A I. M. Zilberbord
%T A note on generalized semicommutative rings
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 69-74
%V 492
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a5/
%G ru
%F ZNSL_2020_492_a5
A. I. Generalov; I. M. Zilberbord. A note on generalized semicommutative rings. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 492 (2020), pp. 69-74. http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a5/

[1] D. Roy, T. Subedi, “Generalized semicommutative rings”, Vestnik Sankt-Peterburgskogo universiteta. Seriya 1. Matematika. Mekhanika. Astronomiya, 7:1(65) (2020) | MR

[2] F. Anderson, K. Fuller, Rings and categories of modules, Springer-Verlag, 1992 | MR | Zbl