Algebraic Mayer–Vietoris theorem over preabelian categories
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 492 (2020), pp. 61-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The famous “algebraic Mayer–Vietoris theorem” is usually stated for complexes over an abelian category. In the present paper this theorem is generalized for complexes over a preabelian category. We use the technique and results from the relative homological algebra that is developed in the paper (A. I. Generalov, Algebra i analyz 4, No. 3 (1992)).
@article{ZNSL_2020_492_a4,
     author = {A. I. Generalov},
     title = {Algebraic {Mayer{\textendash}Vietoris} theorem over preabelian categories},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {61--68},
     year = {2020},
     volume = {492},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a4/}
}
TY  - JOUR
AU  - A. I. Generalov
TI  - Algebraic Mayer–Vietoris theorem over preabelian categories
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 61
EP  - 68
VL  - 492
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a4/
LA  - ru
ID  - ZNSL_2020_492_a4
ER  - 
%0 Journal Article
%A A. I. Generalov
%T Algebraic Mayer–Vietoris theorem over preabelian categories
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 61-68
%V 492
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a4/
%G ru
%F ZNSL_2020_492_a4
A. I. Generalov. Algebraic Mayer–Vietoris theorem over preabelian categories. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 492 (2020), pp. 61-68. http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a4/

[1] P. Selick, Introduction to homotopy theory, Fields Inst. Monographs, 9, AMS, 1997 | MR | Zbl

[2] A. I. Generalov, “Otnositelnaya gomologicheskaya algebra v predabelevykh kategoriyakh, I. Proizvodnye kategorii”, Algebra i analiz, 4:1 (1992), 98–119 | Zbl

[3] A. I. Generalov, “Proizvodnye kategorii additivnoi kategorii”, Algebra i analiz, 4:5 (1992), 91–103 | MR

[4] A. I. Generalov, “Ker-Coker-posledovatelnost dlya predabelevykh kategorii”, Abelevy gruppy i moduli, 11–12, Tomsk, 1994, 78–89 | MR | Zbl