Algebraic Mayer–Vietoris theorem over preabelian categories
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 492 (2020), pp. 61-68
Voir la notice du chapitre de livre
The famous “algebraic Mayer–Vietoris theorem” is usually stated for complexes over an abelian category. In the present paper this theorem is generalized for complexes over a preabelian category. We use the technique and results from the relative homological algebra that is developed in the paper (A. I. Generalov, Algebra i analyz 4, No. 3 (1992)).
@article{ZNSL_2020_492_a4,
author = {A. I. Generalov},
title = {Algebraic {Mayer{\textendash}Vietoris} theorem over preabelian categories},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {61--68},
year = {2020},
volume = {492},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a4/}
}
A. I. Generalov. Algebraic Mayer–Vietoris theorem over preabelian categories. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 492 (2020), pp. 61-68. http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a4/
[1] P. Selick, Introduction to homotopy theory, Fields Inst. Monographs, 9, AMS, 1997 | MR | Zbl
[2] A. I. Generalov, “Otnositelnaya gomologicheskaya algebra v predabelevykh kategoriyakh, I. Proizvodnye kategorii”, Algebra i analiz, 4:1 (1992), 98–119 | Zbl
[3] A. I. Generalov, “Proizvodnye kategorii additivnoi kategorii”, Algebra i analiz, 4:5 (1992), 91–103 | MR
[4] A. I. Generalov, “Ker-Coker-posledovatelnost dlya predabelevykh kategorii”, Abelevy gruppy i moduli, 11–12, Tomsk, 1994, 78–89 | MR | Zbl