Algebraic Mayer–Vietoris theorem over preabelian categories
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 492 (2020), pp. 61-68
Cet article a éte moissonné depuis la source Math-Net.Ru
The famous “algebraic Mayer–Vietoris theorem” is usually stated for complexes over an abelian category. In the present paper this theorem is generalized for complexes over a preabelian category. We use the technique and results from the relative homological algebra that is developed in the paper (A. I. Generalov, Algebra i analyz 4, No. 3 (1992)).
@article{ZNSL_2020_492_a4,
author = {A. I. Generalov},
title = {Algebraic {Mayer{\textendash}Vietoris} theorem over preabelian categories},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {61--68},
year = {2020},
volume = {492},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a4/}
}
A. I. Generalov. Algebraic Mayer–Vietoris theorem over preabelian categories. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 492 (2020), pp. 61-68. http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a4/
[1] P. Selick, Introduction to homotopy theory, Fields Inst. Monographs, 9, AMS, 1997 | MR | Zbl
[2] A. I. Generalov, “Otnositelnaya gomologicheskaya algebra v predabelevykh kategoriyakh, I. Proizvodnye kategorii”, Algebra i analiz, 4:1 (1992), 98–119 | Zbl
[3] A. I. Generalov, “Proizvodnye kategorii additivnoi kategorii”, Algebra i analiz, 4:5 (1992), 91–103 | MR
[4] A. I. Generalov, “Ker-Coker-posledovatelnost dlya predabelevykh kategorii”, Abelevy gruppy i moduli, 11–12, Tomsk, 1994, 78–89 | MR | Zbl